證明:
1
2
-
1
n+1
1
22
+
1
32
+…+
1
n2
n-1
n
(n=2,3,4…).
考點(diǎn):反證法與放縮法
專題:證明題,不等式的解法及應(yīng)用
分析:利用
1
n2
1
(n-1)n
=
1
n-1
-
1
n
,
1
n2
1
(n+1)n
=
1
n
-
1
n+1
,即可證明結(jié)論.
解答: 證明:∵
1
n2
1
(n-1)n
=
1
n-1
-
1
n
,
1
22
+
1
32
+…+
1
n2
<1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=1-
1
n
=
n-1
n
;
1
n2
1
(n+1)n
=
1
n
-
1
n+1
,
1
22
+
1
32
+…+
1
n2
1
2
-
1
3
+
1
3
-
1
4
…+
1
n
-
1
n+1
=
1
2
-
1
n+1
,
1
2
-
1
n+1
1
22
+
1
32
+…+
1
n2
n-1
n
(n=2,3,4…).
點(diǎn)評:本題考查放縮法,考查學(xué)生分析解決問題的能力,利用
1
n2
1
(n-1)n
=
1
n-1
-
1
n
,
1
n2
1
(n+1)n
=
1
n
-
1
n+1
,是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

滿足條件{1,2}?A⊆{1,2,3,4}的集合A有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)P(2,2),傾斜角α=
π
3
,以該平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度,圓C的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)寫出直線l的參數(shù)方程與圓C的直角坐標(biāo)方程;
(Ⅱ)直線l與圓C相交于A、B兩點(diǎn),求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
x
1+|x|
(x∈R),下列說法正確的個(gè)數(shù)有(  )
①函數(shù)f(x)的值域?yàn)椋?1,1);
②若x1≠x2,則f(x1)≠f(x2);
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)),則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在角
3
的終邊上,且|OP|=4,則P點(diǎn)的坐標(biāo)為 ( 。
A、(-2,-2
3
)
B、(-
1
2
,-
3
2
)
C、(-2
3
,-2)
D、(-
3
2
,-
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)的定義域?yàn)镽,g(x)=f(x-1),g(x)是奇函數(shù),且g(3)=1,則f(2014)=( 。
A、0B、1C、-1D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

SC為球O的直徑,A,B是該球球面上的兩點(diǎn),AB=2,∠ASC=∠BSC=
π
4
,若棱錐A-SBC的體積為
4
3
3
,則球O的體積為(  )
A、
3
B、
32π
3
C、27π
D、4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
2a2
x
+x.(a≠0).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-2y=0垂直,求實(shí)數(shù)a的值;
(2)若a>0,求f(x)的最小值g(a);
(3)在(2)的基礎(chǔ)上求證:g(a)≥-e-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=x2+1
B、f(x)=cosx
C、f(x)=ex
D、f(x)=
1
x

查看答案和解析>>

同步練習(xí)冊答案