【題目】在直角坐標(biāo)系中, 橢圓的中心在坐標(biāo)原點,其右焦點為,且點 在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左、右頂點分別為是橢圓上異于的任意一點,直線交橢圓于另一點,直線交直線點, 求證:三點在同一條直線上

【答案】(1)(2)見解析

【解析】

(1)(法一)由題意,求得橢圓的焦點坐標(biāo),利用橢圓的定義,求得,進(jìn)而求得的值,即可得到橢圓的標(biāo)準(zhǔn)方程;

(法二)設(shè)橢圓的方程為),列出方程組,求得的值,得到橢圓的標(biāo)準(zhǔn)方程。

(2)設(shè),,直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系和向量的運算,即可證得三點共線。

1)(法一)設(shè)橢圓的方程為,

一個焦點坐標(biāo)為,∴另一個焦點坐標(biāo)為,

∴由橢圓定義可知,

,,∴橢圓的方程為.

(法二)不妨設(shè)橢圓的方程為),

∵一個焦點坐標(biāo)為,∴,①

又∵點在橢圓上,∴,②

聯(lián)立方程①,②,解得,,

橢圓的方程為.

2)設(shè),直線的方程為,

由方程組消去,并整理得:,

,,,

直線的方程可表示為

將此方程與直線聯(lián)立,可求得點的坐標(biāo)為,

,

,所以,

又向量有公共點,故,三點在同一條直線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為正方形,ADB,平面ABC平面BC,AB=AC=AD=1ABC=45°。

1)求證:AB⊥CD;

2)求點C到平面D的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點A(-,0),B(,0),動點P在y軸上的投影是Q,且.

(1)求動點P的軌跡C的方程;

(2)過F(1,0)作互相垂直的兩條直線交軌跡C于點G,H,M,N,且E1,E2分別是GH,MN的中點.求證:直線E1E2恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯誤的是( )

A. 平面內(nèi)一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行;

B. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行;

C. 平行于同一個平面的兩個平面平行;

D. 若兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足a1m,an+1 (k∈N*,r∈R),其前n項和為.

(1)當(dāng)mr滿足什么關(guān)系時,對任意的n∈N*,數(shù)列{an}都滿足an+2an?

(2)對任意實數(shù)m,r,是否存在實數(shù)pq,使得{a2n+1p}與{a2nq}是同一個等比數(shù)列.若存在,請求出pq滿足的條件;若不存在,請說明理由;

(3)當(dāng)mr=1時,若對任意的n∈N*,都有Snλan,求實數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),,,

判斷如下兩個命題的真假:

命題甲: 在區(qū)間上是增函數(shù);

命題乙: 在區(qū)間上恰有兩個零點,且.

能使命題甲、乙均為真的函數(shù)的序號是

A. ① B. ② C. ①③ D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若,判斷函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園里有一湖泊,其邊界由兩條線段和以為直徑的半圓弧組成,其中為2百米,若在半圓弧,線段,線段上各建一個觀賞亭,再修兩條棧道,使. 記

(1)試用表示的長;

(2)試確定點的位置,使兩條棧道長度之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點AB

)若α,求線段AB中點M的坐標(biāo);

)若|PA·PB|=|OP,其中P2,),求直線l的斜率.

查看答案和解析>>

同步練習(xí)冊答案