5.已知函數(shù)f(x)=x2+kx的圖象在點(diǎn)(1,f(1))處的切線方程為3x-y+b=0,數(shù)列{$\frac{1}{f(n)}$}的前n項(xiàng)和為Sn,則S2015=$\frac{2015}{2016}$.

分析 對(duì)函數(shù)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義可求切線在x=1處的斜率,然后根據(jù)已知切線方程,可求k,代入可求f(n),利用裂項(xiàng)求和即可求.

解答 解:∵函數(shù)f(x)=x2+kx,
∴f′(x)=2x+k,
∴y=f(x)的圖象在點(diǎn)(1,f(1))處的切線斜率k=f′(1)=2+k,
∵切線方程為3x-y+b=0,∴2+k=3,
∴k=1,f(x)=x2+x,
∴f(n)=n2+n=n(n+1),
∴$\frac{1}{f(n)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴S2015=$\frac{1}{f(1)}$+$\frac{1}{f(2)}$+…+$\frac{1}{f(2015)}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$=1-$\frac{1}{2016}$=$\frac{2015}{2016}$.
故答案為:$\frac{2015}{2016}$.

點(diǎn)評(píng) 本題以函數(shù)的導(dǎo)數(shù)的幾何意義為載體,主要考查了切線斜率的求解,及裂項(xiàng)求和方法的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{1-i}{1+i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)是( 。
A.iB.1+iC.-iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,若曲線y=lnx在x=e(e為自然對(duì)數(shù)的底數(shù))處的切線與直線ax-y+3=0垂直,則實(shí)數(shù)a的值為-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)$\overrightarrow a,\overrightarrow b$為非零向量,$|{\overrightarrow b}|=2|{\overrightarrow a}|$,兩組向量$\overrightarrow{x_1},\overrightarrow{x_2},\overrightarrow{x_3},\overrightarrow{x_4}$和$\overrightarrow{y_1},\overrightarrow{y_2},\overrightarrow{y_3},\overrightarrow{y_4}$均由2個(gè)$\overrightarrow a$和2個(gè)$\overrightarrow b$排列而成.若$\overrightarrow{x_1}.\overrightarrow{y_1}+\overrightarrow{x_2}.\overrightarrow{y_2}+\overrightarrow{x_3}.\overrightarrow{y_3}+\overrightarrow{x_4}.\overrightarrow{y_4}$的所有可能取值中的最小值為$4{|{\overrightarrow a}|^2}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,在6×6的方格紙中,若起點(diǎn)和終點(diǎn)均在格點(diǎn)的向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿(mǎn)足$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R),則$\frac{x}{y}$=$\frac{11}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若asinA-csinC=(a-b)sinB.角C=( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)兩個(gè)向量$\overrightarrow a=(λ+2,{λ^2}-{cos^2}α)$和$\overrightarrow b=({m,\frac{m}{2}+sinα})$,其中λ,m,α為實(shí)數(shù),若$\overrightarrow a=2\overrightarrow b$,則λ的取值范圍是( 。
A.$[{-\frac{3}{2},2}]$B.$[{-2,\frac{3}{2}}]$C.$[{-2,-\frac{3}{2}}]$D.$[{\frac{3}{2},2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.有三家工廠分別位于A、B、C三點(diǎn),經(jīng)測(cè)量,AB=BC=5km,AC=6km,為方便處理污水,現(xiàn)要在△ABC的三條邊上選擇一點(diǎn)P處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AP、BP、CP.則AP+BP+CP的最小值為$\frac{49}{5}$kmkm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若集合M={y|y=x2+1},N={x|y=x+1},則M∩N=(  )
A.{(0,1)}B.[1,+∞)C.{(0,1),(1,2)}D.{y|y>1}

查看答案和解析>>

同步練習(xí)冊(cè)答案