【題目】已知函數(shù)f(x)的定義域?yàn)椋?/span>﹣∞,0)∪(0,+∞),f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),則實(shí)數(shù)a的取值范圍是( )
A.a<0B.a≤0C.a≤1D.a≤0或a=1
【答案】D
【解析】
試題要使函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),則根據(jù)函數(shù)是奇函數(shù),則只需要當(dāng)x>0時(shí),函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有一個(gè)即可.
解:因?yàn)?/span>f(x)是奇函數(shù),所以g(x)=f(x)﹣x也是奇函數(shù),
所以要使函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),
則只需要當(dāng)x>0時(shí),函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有一個(gè)即可.
由g(x)=f(x)﹣x=0得,g(x)=x2﹣x+a﹣x=x2﹣2x+a=0,
若△=0,即4﹣4a=0,解得a=1.
若△>0,要使當(dāng)x>0時(shí),函數(shù)g(x)只有一個(gè)零點(diǎn),則g(0)=a≤0,
所以此時(shí),解得a≤0.
綜上a≤0或a=1.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)對(duì)任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0時(shí),恒有f(x)>1.
(1)求證:f(x)在R上是增函數(shù);
(2)若f(3)=4,解不等式f(a2+a-5)<2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題 : 表示雙曲線,命題 : 表示橢圓。
(1)若命題與命題 都為真命題,則 是 的什么條件?
(請(qǐng)用簡(jiǎn)要過(guò)程說(shuō)明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個(gè))
(2)若 為假命題,且 為真命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)名小學(xué)六年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過(guò)為“肥胖”.
常喝 | 不常喝 | 合計(jì) | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計(jì) | 30 |
已知在全部人中隨機(jī)抽取人,抽到肥胖的學(xué)生的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?請(qǐng)說(shuō)明你的理由;
(3)已知常喝碳酸飲料且肥胖的學(xué)生中恰有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中隨機(jī)抽取2人參加一個(gè)有關(guān)健康飲食的電視節(jié)目,求恰好抽到一名男生和一名女生的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下列命題:①當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是減函數(shù);②其圖象關(guān)于軸對(duì)稱(chēng);③無(wú)最大值,也無(wú)最小值;④在區(qū)間上是增函數(shù);⑤的最小值是。其中所有不正確命題的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間與最值;
(2)若方程在區(qū)間內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.(其中為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)命題的說(shuō)法正確的是( )
A. 命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B. “m=1”是“直線x-my=0和直線x+my=0互相垂直”的充要條件
C. 命題“,使得”的否定是﹕“,均有”
D. 命題“已知、B為一個(gè)三角形的兩內(nèi)角,若A=B,則sinA=sinB”的否命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列“若p,則q”形式的命題中,哪些命題中的p是q的充分條件?
(1)若四邊形的兩組對(duì)角分別相等,則這個(gè)四邊形是平行四邊形;
(2)若兩個(gè)三角形的三邊成比例,則這兩個(gè)三角形相似;
(3)若四邊形為菱形,則這個(gè)四邊形的對(duì)角線互相垂直;
(4)若,則;
(5)若,則;
(6)若,為無(wú)理數(shù),則為無(wú)理數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),若直線AB與a成角為60,則AB與b成角為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com