【題目】已知數(shù)列和滿足:,,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和;
(3)設(shè)(),記數(shù)列的前n項和為,問:是否存在正整數(shù),對一切,均有恒成立.若存在,求出所有正整數(shù)的值;若不存在,請說明理由.
【答案】(1)證明見解析; (2) (3)存在,2或3
【解析】
(1)原式兩邊同時除以再根據(jù)等差數(shù)列定義證明即可.
(2)代入(1)中求得的數(shù)列的通項公式,再利用數(shù)列前項積與通項的方法求解即可.
(3)根據(jù)(2)中的方法求得關(guān)于的解析式,再將代入,再根據(jù)正整數(shù),分情況討論的取值,將的關(guān)系式看成函數(shù)進(jìn)行單調(diào)性的分析即可.
(1)證明:由,,兩邊除以,得
,即,
所以,數(shù)列為等差數(shù)列,所以,
(2)當(dāng)時,由(1),
當(dāng)時有,
當(dāng)時有,,兩式相除有.
當(dāng)時, 也成立.故,
(3)由題,同(2)有.
又
因為對一切,均有恒成立,
所以當(dāng)時,.
若,則,,故,故不成立.
若,,
故,,,,.
且當(dāng)時,. .故成立.
若,則,故,,
,.
又當(dāng)時, ,故,故成立.
若,則,
令,.
故在上是增函數(shù),又.所以.
故,故不成立.
綜上所述, 的取值為2或3;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線經(jīng)過曲線的焦點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電器專賣店銷售某種型號的空調(diào),記第天(,)的日銷售量為(單位;臺).函數(shù)圖象中的點分別在兩條直線上,如圖,該兩直線交點的橫坐標(biāo)為,已知時,函數(shù).
(1)當(dāng)時,求函數(shù)的解析式;
(2)求的值及該店前天此型號空調(diào)的銷售總量;
(3)按照經(jīng)驗判斷,當(dāng)該店此型號空調(diào)的銷售總量達(dá)到或超過臺,且日銷售量仍持續(xù)增加時,該型號空調(diào)開始旺銷,問該店此型號空調(diào)銷售到第幾天時,才可被認(rèn)為開始旺銷?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)設(shè),記數(shù)列的前項和為,求正整數(shù),使得對任意,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,其中m是不等于零的常數(shù).
(1)時,直接寫出的值域;
(2)求的單調(diào)遞增區(qū)間;
(3)已知函數(shù),,定義:,,,,其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,.當(dāng)時,恒成立,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中,,,E為CD中點,將沿AE折到的位置.
(1)證明:;
(2)當(dāng)折疊過程中所得四棱錐體積取最大值時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是橢圓上任一點,點到直線:的距離為,到點的距離為,且,若直線與橢圓交于不同兩點、(、都在軸上方),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)為橢圓與軸正半軸的交點時,求直線的方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出定點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是等比數(shù)列,,,.判斷是否具有性質(zhì),并說明理由;
(3)設(shè)是無窮數(shù)列,已知.求證:“對任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com