已知平面向量
a
=(2,3),
b
=(1,m),且
a
b
,則實數(shù)m的值為
 
考點:平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:直接利用向量共線的坐標(biāo)表示列式計算.
解答: 解:∵平面向量
a
=(2,3),
b
=(1,m),且
a
b
,
∴2m=3×1,
∴m=
3
2

故答案為:
3
2
點評:本題考查向量的平行,平行問題是一個重要的知識點,在高考題中常常出現(xiàn),常與向量的模、向量的坐標(biāo)表示等聯(lián)系在一起,要特別注意垂直與平行的區(qū)別.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點,對于函數(shù)f(x)=asinx+bcosx,稱向量
OM
=(a,b)為函數(shù)f(x)的伴隨向量,同時稱函數(shù)f(x)為向量
OM
的伴隨函數(shù).
(Ⅰ)設(shè)函數(shù)g(x)=sin(
π
2
+x)+2cos(
π
2
-x),試求g(x)的伴隨向量
OM
的模;
(Ⅱ)記
ON
=(1,
3
)的伴隨函數(shù)為h(x),求使得關(guān)于x的方程h(x)-t=0在[0,
π
2
]內(nèi)恒有兩個不相等實數(shù)解的實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,f(x)=Asin(2ωx+φ)(ω>0,A>0,-π<φ<0).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[-π,-
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的五個頂點在同一球面上,若該正四棱錐的底面邊長為2,側(cè)棱長為
6
,則這個球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,依次為主視圖,側(cè)視圖,俯視圖,則此幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
3
,tanβ=-
1
7
,且0<α<
π
2
,
π
2
<β<π,則2α-β的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將編號為1,2,3,4,5,6的6張卡片,放入四個不同的盒子中,每個盒子至少放入一張卡片,則編號為3與6的卡片恰在同一個盒子中的不同放法共有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義域為R的奇函數(shù)f(x)滿足f(1+x)=-f(x),則下列結(jié)論:
①f(x)的圖象過點(1,0);
②f(x)的圖象關(guān)于直線x=1對稱;
③f(x)是周期函數(shù),且2是它的一個周期;
④f(x)在區(qū)間(-1,1)上是單調(diào)函數(shù);
其中正確結(jié)論的序號是
 
(填上你認(rèn)為所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)在△ABC中,C為鈍角,設(shè)M=sin(A+B),N=sinA+sinB,P=cosA+cosB,則M,N,P的大小關(guān)系
 

查看答案和解析>>

同步練習(xí)冊答案