求導(dǎo):y=
10x-10-x
10x+10-x
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:直接由導(dǎo)數(shù)的運(yùn)算法則結(jié)合基本初等函數(shù)的導(dǎo)數(shù)公式求解.
解答: 解:∵y=
10x-10-x
10x+10-x
=
102x-1
102x+1

y=
(102x-1)(102x+1)-(102x-1)(102x+1)
(102x+1)2

=
4xln10•102x+4xln10-4xln10•102x+4xln10
(102x+1)2

=
8xln10
(102x+1)2
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的運(yùn)算,考查了導(dǎo)數(shù)的運(yùn)算法則與基本初等函數(shù)的導(dǎo)數(shù)公式,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知ln(sinA+sinB)=lnsinA+lnsinB-ln(sinB-sinA).且cos(A-B)+cosC=1-cos2C.
(1)試確定△ABC的形狀;
(2)求
a+c
b
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}.a(chǎn)1=2,當(dāng)n≥2時(shí),
an
2n
=
an-1
2n-1
+
3
2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)Cn=2an-3•2n,設(shè)Tn為數(shù)列{Cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-
x
1+|x|
,(x∈R),M=[a,b](a<b),N={y|y=f(x),x∈M},使M=N成立的實(shí)數(shù)對(duì)(a,b)有多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x
x+1
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<x<
π
2
,sin2
x
2
+
3
sin
x
2
cos(π+
x
2
)=-
1
10
,求tan(2x+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a82-(a1+a3+…+a92=39,則實(shí)數(shù)m的取值為( 。
A、1或-3B、-1或3
C、1D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=x3-3x+ax2在[-1,1]上恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x+y≥a
x-y≤-1
且z=x+ay的最小值為7,則a=( 。
A、-5B、3
C、-5或3D、5或-3

查看答案和解析>>

同步練習(xí)冊(cè)答案