分析 (1)建立方程組進(jìn)行求解即可求a,b的值;
(2)求出數(shù)列的通項(xiàng)公式,解不等式即可.
解答 解:(1)∵a1=$\frac{1}{4}$,a10=$\frac{28}{31}$.
∴a1=$\frac{a}{1+b}$=$\frac{1}{4}$,a10=$\frac{90+a}{100+a}$=$\frac{28}{31}$.
即1+b=4a,31a-28b=10,
得a=$\frac{2}{9}$,b=-$\frac{1}{9}$;
(2)an=$\frac{{n}^{2}-n+a}{{n}^{2}+b}$=$\frac{{n}^{2}-n+\frac{2}{9}}{{n}^{2}-\frac{1}{9}}$,
由$\frac{1}{3}$<$\frac{{n}^{2}-n+\frac{2}{9}}{{n}^{2}-\frac{1}{9}}$<$\frac{2}{3}$,
整理得$\left\{\begin{array}{l}{\frac{{n}^{2}-n+\frac{2}{9}}{{n}^{2}-\frac{1}{9}}>\frac{1}{3}}\\{\frac{{n}^{2}-n+\frac{2}{9}}{{n}^{2}-\frac{1}{9}}<\frac{2}{3}}\end{array}\right.$,
即$\left\{\begin{array}{l}{18{n}^{2}-27n+7>0}\\{9{n}^{2}-27n+8<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{(3n-1)(6n-7)>0}\\{(3n-1)(3n-8)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{n>\frac{7}{6}或n<\frac{1}{3}}\\{\frac{1}{3}<n<\frac{8}{3}}\end{array}\right.$,
∵n為正整數(shù),
∴n=2
即在區(qū)間($\frac{1}{3}$,$\frac{2}{3}$)內(nèi)有數(shù)列中的項(xiàng),且僅有一項(xiàng):為第二項(xiàng)a2=$\frac{4-2+\frac{2}{9}}{4-\frac{1}{9}}$=$\frac{4}{7}$.
點(diǎn)評(píng) 本題主要考查數(shù)列通項(xiàng)公式的求解,利用待定系數(shù)法求出a,b是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a7>0,則a2015<0 | B. | 若a4>0,則a2014<0 | ||
C. | 若a7>0,則S2015>0 | D. | 若a4>0,則S2014>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com