分析 (法一):設(shè)k=$\frac{y-2}{x}$,則y=kx+2,代入x2+y2-2x-3=0,利用△=(4k-2)2-4(1+k2)=12k2-16k≥0,求出k的范圍,可得$\frac{y-2}{x}$的取值范圍;
(法二):利用參數(shù)法,結(jié)合配方法,即可求出2x2+y2的取值范圍.
解答 解:(法一):設(shè)k=$\frac{y-2}{x}$,則y=kx+2,代入x2+y2-2x-3=0,
可得(1+k2)x2+(4k-2)x+1=0,
∴△=(4k-2)2-4(1+k2)=12k2-16k≥0,
∴0≤k≤$\frac{4}{3}$,
∴$\frac{y-2}{x}$的取值范圍是[0,$\frac{4}{3}$];
(法二):x2+y2-2x-3=0可化為(x-1)2+y2=4,
設(shè)x=1+2cosα,y=sinα,
則2x2+y2=2(1+2cosα)2+(sinα)2=3(cosα+$\frac{1}{3}$)2+$\frac{5}{3}$∈[$\frac{5}{3}$,7].
故答案為:[0,$\frac{4}{3}$];[$\frac{5}{3}$,7].
點(diǎn)評 本題考查直線與圓的位置關(guān)系的運(yùn)用,考查圓的參數(shù)方程,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 6$\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com