已知△ABC的頂點A,B在橢圓x2+3y2=4上,C在直線l:y=x+2上,且AB∥l。
(1)當AB邊通過坐標原點O時,求AB的長及△ABC的面積;
(2)當∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程。
解:(1)因為AB∥l,且AB邊通過點(0,0),
所以AB所在直線的方程為y=x
設(shè)A,B兩點坐標分別為(x1,y1),(x2,y2

所以
又因為AB邊上的高h等于原點到直線l的距離,
所以
。
(2)設(shè)AB所在直線的方程為y=x+m

因為A,B在橢圓上,
所以   
設(shè)A,B兩點坐標分別為(x1,y1),(x2,y2
   
所以   
又因為BC的長等于點(0,m)到直線l的距離,

所以   
所以當m=-1時,AC邊最長(這時
此時AB所在直線的方程為y=x-1。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系xoy中,已知△ABC的頂點A(-1,0)和C(1,0),頂點B在橢圓
x2
4
+
y2
3
=1
上,則
sinA+sinC
sinB
的值是( 。
A、
3
2
B、
3
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(2,8),B(-4,0),C(6,0),
(1)求直線AB的斜率; 
(2)求BC邊上的中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A,B的坐標分別為(-4,0),(4,0),C 為動點,且滿足|AC|+|BC|=
54
|AB|
,求點C的軌跡方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(1,3),AB邊上的中線CM所在直線方程為2x-3y+2=0,AC邊上的高BH所在直線方程為2x+3y-9=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(0,-4),B(0,4),且4(sinB-sinA)=3sinC,則頂點C的軌跡方程是
y2
9
-
x2
7
=1
(y>3)
y2
9
-
x2
7
=1
(y>3)

查看答案和解析>>

同步練習冊答案