14.已知樣本數(shù)據(jù) x1,x2,…,xn的均值$\overline{x}$=5,則樣本數(shù)據(jù) 2x1+1,2x2+1,…,2xn+1 的均值為11.

分析 利用平均數(shù)計算公式求解

解答 解:∵數(shù)據(jù)x1,x2,…,xn的平均數(shù)為均值$\overline{x}$=5,
則樣本數(shù)據(jù) 2x1+1,2x2+1,…,2xn+1 的均值為:$\overline{x'}=2\overline{x′}+1$=5×2+1=11;
故答案為:11.

點評 本題考查數(shù)據(jù)的平均數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了了解所加工一批零件的長度,抽測了其中200個零件的長度,在這個問題中,200個零件的長度是( 。
A.總體B.個體是每一個零件
C.總體的一個樣本D.樣本容量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為比較甲,乙兩地某月14時的氣溫,隨機選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;
②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;
③甲地該月14時的氣溫的標(biāo)準(zhǔn)差小于乙地該月14時的氣溫的標(biāo)準(zhǔn)差;
④甲地該月14時的氣溫的標(biāo)準(zhǔn)差大于乙地該月14時的氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的三視圖如圖所示,則該三棱錐的表面積是( 。
A.2+$\sqrt{5}$B.4+$\sqrt{5}$C.2+2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐A-EFCB中,△AEF為等邊三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O為EF的中點.
(Ⅰ)求證:AO⊥BE.
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE⊥平面AOC,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知過原點的動直線l與圓C1:x2+y2-6x+5=0相交于不同的兩點A,B.
(1)求圓C1的圓心坐標(biāo);
(2)求線段AB 的中點M的軌跡C的方程;
(3)是否存在實數(shù) k,使得直線L:y=k(x-4)與曲線 C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知A,B為雙曲線E的左,右頂點,點M在E上,△ABM為等腰三角形,頂角為120°,則E的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合M={x|x2=x},N={x|lgx≤0},則M∪N=( 。
A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]

查看答案和解析>>

同步練習(xí)冊答案