分析 (1)利用三角形的中位線得出OM∥VB,利用線面平行的判定定理證明VB∥平面MOC;
(2)證明:OC⊥平面VAB,即可證明平面MOC⊥平面VAB
(3)利用等體積法求三棱錐V-ABC的體積.
解答 (1)證明:∵O,M分別為AB,VA的中點(diǎn),
∴OM∥VB,
∵VB?平面MOC,OM?平面MOC,
∴VB∥平面MOC;
(2)∵AC=BC,O為AB的中點(diǎn),
∴OC⊥AB,
∵平面VAB⊥平面ABC,OC?平面ABC,
∴OC⊥平面VAB,
∵OC?平面MOC,
∴平面MOC⊥平面VAB
(3)在等腰直角三角形ACB中,AC=BC=$\sqrt{2}$,∴AB=2,OC=1,
∴S△VAB=$\sqrt{3}$,
∵OC⊥平面VAB,
∴VC-VAB=$\frac{1}{3}OC$•S△VAB=$\frac{\sqrt{3}}{3}$,
∴VV-ABC=VC-VAB=$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查線面平行的判定,考查平面與平面垂直的判定,考查體積的計(jì)算,正確運(yùn)用線面平行、平面與平面垂直的判定定理是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com