已知函數(shù)f(x)=xn+1(n∈N*)的圖象與直線x=1交于點(diǎn)P,若函數(shù)f(x)的圖象在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2014x1+log2014x2+…+log2014x2013的值為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:由題意可得P(1,1),f′(x)=(n+1)xn,根據(jù)導(dǎo)數(shù)的幾何意義可求切線的斜率k,進(jìn)而可求切線方程,切線方程,在方程中,令y=0可得,xn=
n
n+1
,利用累乘可求x1x2…x2013=
1
2
2
3
3
4
•…•
2013
2014
=
1
2014
,代入可求出答案.
解答: 解:由題意可得P(1,1)
對(duì)函數(shù)f(x)=xn+1求導(dǎo)可得,f′(x)=(n+1)xn
∴y=f(x)在點(diǎn)P處的切線斜率K=f′(1)=n+1,切線方程為y-1=(n+1)(x-1)
令y=0可得,xn=
n
n+1

∴x1x2…x2013=
1
2
2
3
3
4
•…•
2013
2014
=
1
2014
,
∴l(xiāng)og2014x1+log2014x2+log2014x3+…log2014x2013=log2014(x1x2…x2013)=log2014
1
2014
=-1.
故答案為:-1.
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,累乘及對(duì)數(shù)的運(yùn)算性質(zhì)的綜合應(yīng)用,還考查了基本運(yùn)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,且x≠1,數(shù)列{an}的前n項(xiàng)和為Sn,它滿足條件
xn-1
Sn
=1-
1
x
,數(shù)列{bn}中,bn=an•lgan
(1)求數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若對(duì)一切n∈N*都有bn<bn+1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,f(x)是定義在區(qū)間[-c,c](c>0)上的奇函數(shù),令g(x)=af(x)+b,并有關(guān)于函數(shù)g(x)的四個(gè)論斷:
①若a>0,對(duì)于[-1,1]內(nèi)的任意實(shí)數(shù)m,n(m<n),
g(n)-g(m)
n-m
>0
恒成立;
②函數(shù)g(x)是奇函數(shù)的充要條件是b=0;
③任意a∈R,g(x)的導(dǎo)函數(shù)g′(x)有兩個(gè)零點(diǎn);
④若a≥1,b<0,則方程g(x)=0必有3個(gè)實(shí)數(shù)根;
其中,所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(x-
2
x
8的展開(kāi)式中,則常數(shù)項(xiàng)是
 
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ為參數(shù),r>0).以O(shè)為極點(diǎn),x軸正半軸為極軸,并取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=1
.當(dāng)圓C上的點(diǎn)到直線l的最大距離為4時(shí),圓的半徑r=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為坐標(biāo)原點(diǎn),P1、P2是雙曲線
x2
a2
-
y2
b2
=1
上的點(diǎn).P是線段P1P2的中點(diǎn),直線OP、P1P2的斜率分別為k1、k2,則k1k2=( 。
A、
b
a
B、
b2
a2
C、
a
b
D、
a2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面的莖葉圖表示柜臺(tái)記錄的一天銷售額情況(單位:元),則銷售額中的中位數(shù)是(  )
A、30.5B、31.5
C、31D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為1的球的內(nèi)接正三棱柱(底面是正三角形的直棱柱)的側(cè)面積為3
3
,則正三棱柱的高為(  )
A、2
2
B、
3
C、2
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足z=i(2+4i)(i是虛數(shù)單位),則在復(fù)平面內(nèi),z對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( 。
A、(-4,2)
B、(-2,4)
C、(2,4)
D、(4,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案