A. | 2 | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{3}$ |
分析 先求出拋物線的焦點(diǎn),可得雙曲線的一個(gè)焦點(diǎn)坐標(biāo),再利用過點(diǎn)F且垂直于實(shí)軸的弦長為$\frac{{2\sqrt{3}}}{3}$,求出a,即可求得雙曲線的離心率.
解答 解:拋物線$y=\frac{1}{8}{x^2}$的焦點(diǎn)坐標(biāo)為(0,2),∴雙曲線的一個(gè)焦點(diǎn)為(0,2).
令y=2,代入雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),可得$\frac{4}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1,
∴x=±b$\sqrt{\frac{4}{{a}^{2}}-1}$,
∵過點(diǎn)F且垂直于實(shí)軸的弦長為$\frac{{2\sqrt{3}}}{3}$,
∴2b$\sqrt{\frac{4}{{a}^{2}}-1}$=$\frac{{2\sqrt{3}}}{3}$,
且a2+b2=4,
解得a=$\sqrt{3}$,b=1,c=2,
∴e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故選:B.
點(diǎn)評(píng) 本題考查拋物線的幾何性質(zhì),考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,正確求弦長是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{11}{4}$ | B. | $\frac{5\sqrt{5}}{4}$ | C. | $\frac{41}{20}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+(y+1)2=18 | B. | (x+1)2+y2=9 | C. | (x+1)2+y2=18 | D. | x2+(y+1)2=9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120 | B. | 240 | C. | 360 | D. | 480 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com