【題目】平面直角坐標系中,△ABC的三個頂點為A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過點B且橫、縱截距互為相反數,求直線l的方程.
【答案】解:(Ⅰ)因為直線BC的斜率kBC= =﹣ .
所以BC邊上的高線AH的斜率kAH=﹣ =2,
所以直線AH的方程為y﹣0=2(x+3),即2x﹣y+6=0.
(Ⅱ)若直線l的橫、縱截距均為零,則直線l過原點.又因為直線l過點B(2,1),所以直線l的方程為y= x,即x﹣2y=0.
若直線l的橫、縱截距均不為零,設直線l的方程為 + =1,則 + =1,解得a=1.此時直線l的方程為x﹣y﹣1=0.
綜上,直線l的方程為x﹣2y=0或x﹣y﹣1=0
【解析】(Ⅰ)先求出BC所在直線的斜率,根據垂直得出BC邊上的高所在直線的斜率,由點斜式寫出直線方程,并化為一般式.(Ⅱ)設所求的直線l方程為 + =1或y=kx.把點B(2,1)代入上述方程即可得出.
科目:高中數學 來源: 題型:
【題目】如果若干個函數的圖象經過平移后能夠重合,則稱這些函數“互為生成”函數,給出下列函數:
①f(x)=sinx﹣cosx,
②f(x)= (sinx+cosx),
③f(x)= sinx+2,
④f(x)=sinx,其中互為生成的函數是( )
A.①②
B.①③
C.③④
D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的首項為a,公差為b,且不等式ax2﹣3x+2>0的解集為(﹣∞,1)∪(b,+∞)
(1)求數列{an}的通項公式
(2)設數列{bn}滿足= ,求數列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=log2( +a).
(1)當a=1時,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范圍;
(3)若關于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線x﹣9y﹣8=0與曲線C:y=x3﹣px2+3x相交于A,B,且曲線C在A,B處的切線平行,則實數p的值為( )
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓C: =1(a>b>0)過點(0,4),離心率為 .
(1)求橢圓C的方程;
(2)求過點(3,0)且斜率為 的直線被橢圓所截得線段的中點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com