17.上邊程序框圖的算法思路來(lái)源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的a,b分別為15,18,則輸出的a為(  )
A.0B.1C.3D.15

分析 由循環(huán)結(jié)構(gòu)的特點(diǎn),先判斷,再執(zhí)行,分別計(jì)算出當(dāng)前的a,b的值,即可得到結(jié)論.

解答 解:由a=15,b=18,不滿足a>b,
則b變?yōu)?8-15=3,
由b<a,則a變?yōu)?5-3=12,
由b<a,則a變?yōu)?2-3=9,
由b<a,則a變?yōu)?-3=6,
由b<a,則a變?yōu)?-3=3,
由a=b=3,
則輸出的a=3.
故選:C.

點(diǎn)評(píng) 本題考查算法和程序框圖,主要考查循環(huán)結(jié)構(gòu)的理解和運(yùn)用,以及賦值語(yǔ)句的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在復(fù)平面上,復(fù)數(shù)$\frac{2+4i}{1+i}$對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第三象限C.第二象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系xOy中,橢圓W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,過(guò)橢圓右焦點(diǎn)且垂直于x軸的直線交橢圓所得的弦的弦長(zhǎng)為$\frac{2\sqrt{3}}{3}$,過(guò)點(diǎn)A的直線與橢圓W交于另一點(diǎn)C,
(Ⅰ)求橢圓W的標(biāo)準(zhǔn)方程
(Ⅱ)當(dāng)AC的斜率為$\frac{1}{3}$時(shí),求線段AC的長(zhǎng);
(Ⅲ)設(shè)D是AC的中點(diǎn),且以AB為直徑的圓恰過(guò)點(diǎn)D,求直線AC的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}是以m為首項(xiàng),m為公差的等差數(shù)列,數(shù)列{bn}是以m為首項(xiàng),m為公比的等比數(shù)列,其中a2=b2,設(shè)Sn是數(shù)列{bn}的前n項(xiàng)和,則數(shù)列$\left\{{\frac{{4{b_n}}}{{{S_n}{S_{n+1}}}}}\right\}$的前n項(xiàng)和為1-$\frac{1}{{2}^{n+1}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=cosx•log2|x|的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)y=f(x)是R上的偶函數(shù),設(shè)a=ln$\frac{1}{π}$,b=(lnπ)2,c=ln$\sqrt{π}$,當(dāng)任意x1、x2∈(0,+∞)時(shí),都有(x1-x2)•[f(x1)-f(x2)]<0,則( 。
A.f(a)>f(b)>f(c)B.f(b)>f(a)>f(c)C.f(c)>f(b)>f(a)D.f(c)>f(a)>f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.向量$\overrightarrow{a}$=(1,-2)與$\overrightarrow$=(3,t)的夾角為θ,$\overrightarrow{c}$=(1,-3),$\overrightarrow$⊥$\overrightarrow{c}$,則cosθ=$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,幾何體ABCD-B1C1D1中,四邊形ABCD為菱形,∠BAD=60°,AB=a,平面B1C1D1∥平面ABCD,BB1、CC1、DD1都垂直于平面ABCD,且BB1=$\sqrt{2}$a,E為CC1的中點(diǎn),F(xiàn)為AB的中點(diǎn).
(I)求證:△DB1E為等腰直角三角形;
(Ⅱ)求平面B1DE與平面FDE所成的銳二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若集合$A=\{x|\frac{x+5}{x-2}<0\}$,B={x|-4<x<3},則集合A∩B為(  )
A.{x|-5<x<3}B.{x|-4<x<2}C.{x|-4<x<5}D.{x|-2<x<3}

查看答案和解析>>

同步練習(xí)冊(cè)答案