分析 (1)利用向量的數(shù)量積,二倍角公式兩角差的余弦函數(shù)化簡(jiǎn)函數(shù)的表達(dá)式,然后求的對(duì)稱軸和對(duì)稱中心;
(2)由(1)化簡(jiǎn)f(B)=0,根據(jù)銳角B的范圍求出角B,由余弦定理和基本不等式求出(a+c)的范圍,即可求出△ABC周長(zhǎng)的最大值.
解答 解:f(x)=$\overrightarrow{m}•\overrightarrow{n}$
=2sinx•(2cos2$\frac{x}{2}$-1)-$\sqrt{3}$(cos2x+1)
=2sinxcosx-$\sqrt{3}$cos2x-$\sqrt{3}$
=sin2x-$\sqrt{3}$cos2x-$\sqrt{3}$
=2sin(2x-$\frac{π}{3}$)-$\sqrt{3}$;
(1)令 $2x-\frac{π}{3}=\frac{π}{2}+kπ,k∈Z$,
解得$x=\frac{5π}{12}+\frac{kπ}{2}$,
故函數(shù)f(x)的對(duì)稱軸為 $x=\frac{5π}{12}+\frac{kπ}{2},k∈Z$.
令 $2x-\frac{π}{3}=kπ,k∈Z$,解得$x=\frac{π}{6}+\frac{kπ}{2}$,
故函數(shù)f(x)的對(duì)稱中心為 $(\frac{π}{6}+\frac{kπ}{2},-\sqrt{3}),k∈Z$;
(2)$f(B)=2sin(2B-\frac{π}{3})-\sqrt{3}=0$,即$sin(2B-\frac{π}{3})=\frac{{\sqrt{3}}}{2}$,
又∵$0<B<\frac{π}{2}$,
∴$-\frac{π}{3}<2B-\frac{π}{3}<\frac{2π}{3}$,
∴$2B-\frac{π}{3}=\frac{π}{3}$
即${B}=\frac{π}{3}$.
又b=2,由余弦定理$cos{B}=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}$,得a2+c2-ac-4=0,
即(a+c)2-3ac-4=0,
∴(a+c)2=3ac+4.
又∵$ac≤{(\frac{a+c}{2})^2}=\frac{{{{(a+c)}^2}}}{4}$代入上式得${(a+c)^2}=3ac+4≤\frac{{3{{(a+c)}^2}}}{4}+4$
解得(a+c)2≤16,a+c≤4,
即△A BC周長(zhǎng)C=a+b+c≤2+4=6(當(dāng)且僅當(dāng)a=c=2時(shí)等號(hào)成立),故△ABC周長(zhǎng)的最大值為6.
點(diǎn)評(píng) 本題考查余弦定理,基本不等式,正弦函數(shù)的性質(zhì),以及二倍角公式、兩角和的正弦公式的應(yīng)用,考查整體思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 實(shí)數(shù)k有最大值2 | B. | 實(shí)數(shù)k有最小值2 | C. | 實(shí)數(shù)k有最大值$\frac{2}{e}$ | D. | 實(shí)數(shù)k有最小值$\frac{2}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | $\sqrt{3}$i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,2x2-1≤0 | B. | ?x∉R,2x2-1≤0 | C. | ?x∈R,2x2-1≤0 | D. | ?x∉R,2x2-1≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2005 | B. | 2006 | C. | 2007 | D. | 不能確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com