8.$\frac{{2-5{i^{2015}}}}{{1+3{i^{2013}}}}$=(  )
A.$\frac{3}{10}+\frac{9}{10}$iB.$\frac{3}{10}-\frac{9}{10}i$C.$-\frac{3}{10}+\frac{9}{10}i$D.$\frac{17}{10}-\frac{1}{10}$i

分析 由于i4=1,可得i2013=(i4503•i=i,i2015=-i,再利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:∵i4=1,∴i2013=(i4503•i=i,i2015=(i4503•i3=-i,
∴原式=$\frac{2-5(-i)}{1+3i}$=$\frac{(2+5i)(1-3i)}{(1+3i)(1-3i)}$=$\frac{17-i}{10}$,
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow$=(m+4,1),若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則與$\overrightarrow{a}$方向相同的單位向量的坐標(biāo)是$(-\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知公共汽車每7min一班,在車站停留1min,開走后再過(guò)7min第二輛車到站,則乘客到達(dá)車站立即可以上車的概率為( 。
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=x3-3x-1,g(x)=2x-a,若對(duì)任意x1∈[0,2],存在x2∈[0,2]使|f(x1)-g(x2)|≤2,則實(shí)數(shù)a的取值范圍(  )
A.[1,5]B.[2,5]C.[-2,2]D.[5,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)變量x、y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,則z=32x-y的最大值為(  )
A.$\root{3}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則此函數(shù)的解析式為f(x)=2sin(2x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知命題p1:函數(shù)y=ex-e-x在R上為增函數(shù);命題p2:函數(shù)y=ex+e-x在R上為減函數(shù),則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2,q4:p1∧(¬p2)中,真命題是( 。
A.q1、q3B.q2、q3C.q1、q4D.q2、q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知菱形ABCD的邊長(zhǎng)為2,∠BAD=120°,點(diǎn)E、F分別在邊BC、CD上,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=μ$\overrightarrow{DC}$.若λ+μ=$\frac{2}{3}$,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{10}{9}$D.$\frac{11}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=3sin(2x+$\frac{π}{3}$)的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下:
①圖象C關(guān)于點(diǎn)($\frac{π}{3}$,0)對(duì)稱;
②圖象C關(guān)于直線x=$\frac{11π}{12}$對(duì)稱;
③由圖象C向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度可以得到y(tǒng)=3sin2x的圖象;
④函數(shù)f(x)在區(qū)間(-$\frac{π}{6}$,$\frac{5π}{6}$)內(nèi)是減函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為$\frac{π}{2}$.
其中正確的結(jié)論序號(hào)是①③.(把你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案