7.已知平面向量$\overrightarrow a,\overrightarrow b$是非零向量,$|\overrightarrow a|=2$,$\overrightarrow a⊥(\overrightarrow a+2\overrightarrow b)$,則向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為( 。
A.1B.-1C.2D.-2

分析 先根據(jù)向量垂直,得到$\overrightarrow{a}•\overrightarrow$=-2,再根據(jù)投影的定義即可求出.

解答 解:∵平面向量$\overrightarrow a,\overrightarrow b$是非零向量,$|\overrightarrow a|=2$,$\overrightarrow a⊥(\overrightarrow a+2\overrightarrow b)$,
∴$\overrightarrow{a}$•($\overrightarrow{a}+2\overrightarrow$)=0,
即${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow$=0,
即$\overrightarrow{a}•\overrightarrow$=-2,
∴向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$=$\frac{-2}{2}$=-1,
故選:B.

點(diǎn)評(píng) 本題主要考查向量投影的定義及求解的方法,公式與定義兩者要靈活運(yùn)用.解答關(guān)鍵在于要求熟練應(yīng)用公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知F是拋物線y2=2px(p>0)的焦點(diǎn),過(guò)F的直線與拋物線交于A、B兩點(diǎn),AB中點(diǎn)為C,過(guò)C作拋物線的準(zhǔn)線的垂線交準(zhǔn)線于C1點(diǎn),若CC1中點(diǎn)M的坐標(biāo)為($\sqrt{2}$,4),則p=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(λ,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=e2-x+a,x∈R的圖象在點(diǎn)x=0處的切線為y=bx.
(Ⅰ)求函數(shù)f(x)的解析式.
(Ⅱ)當(dāng)x∈R時(shí),求證:f(x)≥-x2+x;
(Ⅲ)若f(x)>kx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某樓盤(pán)按國(guó)家去庫(kù)存的要求,據(jù)市場(chǎng)調(diào)查預(yù)測(cè),降價(jià)銷(xiāo)售.今年110平方米套房的銷(xiāo)售將以每月10%的增長(zhǎng)率增長(zhǎng);90平方米套房的銷(xiāo)售將每月遞增10套.已知該地區(qū)今年1月份銷(xiāo)售110平方米套房和90平方米套房均為20套,據(jù)此推測(cè)該地區(qū)今年這兩種套房的銷(xiāo)售總量約為1320套(參考數(shù)據(jù):1.111≈2.9,1.112≈3.1,1.113≈3.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:${ρ^2}=\frac{12}{{2+{{cos}^2}θ}}$,直線l:$2ρcos(θ-\frac{π}{6})=\sqrt{3}$.
(1)寫(xiě)出直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A、B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),點(diǎn)(4,-2)在它的一條漸近線上,則離心率等于( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知弧長(zhǎng)為πcm的弧所對(duì)的圓心角為$\frac{π}{4}$,則這條弧所在圓的直徑是8cm,這條弧所在的扇形面積是2πcm2

查看答案和解析>>

同步練習(xí)冊(cè)答案