16.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),點(4,-2)在它的一條漸近線上,則離心率等于( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

分析 漸近線方程為$y=-\frac{a}x$,(4,-2)滿足方程:$-2=-\frac{a}×4$,所以$\frac{a}=\frac{1}{2}$,即可求出雙曲線的離心率.

解答 解:漸近線方程為$y=-\frac{a}x$,(4,-2)滿足方程:$-2=-\frac{a}×4$,所以$\frac{a}=\frac{1}{2}$,
又$e=\frac{c}{a}=\sqrt{\frac{{{a^2}+{b^2}}}{a^2}}=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{5}$,
故選:B.

點評 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線l與球O有且只有一個公共點P,從直線l出發(fā)的兩個半平面α,β截球O的兩個截面圓的半徑分別為1、2,二面角α-l-β的平面角為$\frac{2π}{3}$,則球O的表面積$\frac{112}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知平面向量$\overrightarrow a,\overrightarrow b$是非零向量,$|\overrightarrow a|=2$,$\overrightarrow a⊥(\overrightarrow a+2\overrightarrow b)$,則向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是( 。
A.B.$\frac{9π}{2}$C.$\frac{125π}{6}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)各項均為正的等比數(shù)列{an}滿足a4a8=3a7,則log3(a1a2…a9)等于(  )
A.38B.39C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x+1)的圖象關(guān)于x=-1對稱,當(dāng)x≥0時,f(x)=3-x,f(2)-f(2x-1)<0的解為(-$\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,4)滿足$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)x等于( 。
A.8B.-8C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^{-2}}{,_{\;}}_{\;}x<0\\ lnx{,_{\;}}_{\;}x>0\end{array}\right.$若f(a)=2,則實數(shù)a=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=x2+bx+c(b,c∈R),若對任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,則b的取值范圍是(  )
A.[0,2]B.(0,2]C.(-2,2)D.[-2,2]

查看答案和解析>>

同步練習(xí)冊答案