設(shè)二次函數(shù)滿足(+2)=(2-),且方程的兩實(shí)根的平方和為10,的圖象過(guò)點(diǎn)(0,3),
⑴求()的解析式.
⑵求上的值域。
(1);(2)[-1,0].

試題分析:(1)設(shè)
(+2)=(2-),∴的圖像有對(duì)稱軸, ∴,
的圖象過(guò)點(diǎn)(0,3),∴,∴
設(shè)方程的兩根為,則:,
,得:,∴,解得:
.
(2)由(1)知,圖象對(duì)稱軸為x=2,即在x=2時(shí),取到最小值-1,在x=-1,3時(shí),取到最大值0,所以函數(shù)在的值域?yàn)閇-1,0].
點(diǎn)評(píng):中檔題,二次函數(shù)圖象和性質(zhì),是高考必考內(nèi)容,往往與其它知識(shí)綜合在一起,本題首先利用待定系數(shù)法求得解析式,為進(jìn)一步研究函數(shù)在指定區(qū)間的值域打下基礎(chǔ)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品在該售價(jià)的基礎(chǔ)上每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷售利潤(rùn)為元.(14分)
(1)求的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則=________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則=_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,則的最大值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于在區(qū)間上有意義的兩個(gè)函數(shù),如果對(duì)于任意的,都有,則稱在區(qū)間上是接近的兩個(gè)函數(shù),否則稱它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005745400449.png" style="vertical-align:middle;" />上是非接近的兩個(gè)函數(shù)。現(xiàn)有兩個(gè)函數(shù),,且都有意義.
(1)求的取值范圍;
(2)討論在區(qū)間上是否是接近的兩個(gè)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的極值;
(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

判斷下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為(   )
(1);
(2);
(3)
(4),;
(5)。
A.(1),(2)B.(2),(3)C.(4)D.(3),(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案