已知x>0,則x+
4x
+3的最小值為
7
7
分析:由x>0,則得x+
4
x
≥2
4
=4,當(dāng)且僅當(dāng)x=
4
x
時(shí),等號成立,故x+
4
x
的最小值等于4,由此求得x+
4
x
+3的最小值.
解答:解:x>0,則x+
4
x
≥2
4
=4,當(dāng)且僅當(dāng)x=
4
x
時(shí),等號成立,故x+
4
x
的最小值等于4,
故x+
4
x
+3的最小值為4+3=7,
故答案為7.
點(diǎn)評:本題主要考查基本不等式的應(yīng)用,注意基本不等式的使用條件,并注意檢驗(yàn)等號成立的條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),是否存在實(shí)數(shù)m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說明理由;
(3)設(shè)定義在D上的函數(shù)y=h(x)的圖象在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”.當(dāng)a=4,試問y=f(x)是否存在“類對稱點(diǎn)”?若存在,請至少求出一個(gè)“類對稱點(diǎn)”的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,則
x
x2+4
的最大值為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明下列命題:
已知函數(shù)f(x)=kx+p及實(shí)數(shù)m,n(m<n),若f(m)>0,f(n)>0,則對于一切實(shí)數(shù)x∈(m,n)都有f(x)>0.
(2)利用(1)的結(jié)論解決下列各問題:
①若對于-6≤x≤4,不等式2x+20>k2x+16k恒成立,求實(shí)數(shù)k的取值范圍.
②a,b,c∈R,且|a|<1,|b|<1,|c|<1,求證:ab+bc+ca>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知x>0,則
x
x2+4
的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知x>0,則
x
x2+4
的最大值為______.

查看答案和解析>>

同步練習(xí)冊答案