18.從5名女同學(xué)和4名男同學(xué)中選出4人參加四場不同的演講,分別按下列要求,各有多少種不同選法?
(1)男、女同學(xué)各2名;
(2)男、女同學(xué)分別至少有1名;
(3)男、女同學(xué)分別至少有1名且男同學(xué)甲與女同學(xué)乙不能同時選出.

分析 (1)可分兩步求解,先選出四人,再作一全排列計算出不同的選法種數(shù);
(2)可分兩步求解,先選出四人,再作一全排列計算出不同的選法種數(shù),由于“男、女同學(xué)分別至少有1名”包括了三個事件,“一男三女”,“二男二女”,“三男一女”,選人時要分三類計數(shù),然后再進行全排列;
(3)可計算出男同學(xué)甲與女同學(xué)乙同時選出的情況種數(shù),從(2)的結(jié)果中排除掉,即可得到事件“在(2)的前提下,男同學(xué)甲與女同學(xué)乙不能同時選出”的選法種數(shù)

解答 解:(1)男、女同學(xué)各2名的選法有C42×C52=6×10=60種,故總的不同選法有60×A44=1440種;
即男女同學(xué)各兩名的選法共有1440種.
(2)“男、女同學(xué)分別至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,故選人種數(shù)為C41×C53+C42×C52+C43×C51=40+60+20=120
故總的安排方法有120×A44=2880
故不同的選法有2880種.
(3)可計算男同學(xué)甲與女同學(xué)乙同時選出的種數(shù),由于已有兩人,故再選兩人即可,此兩人可能是兩男,一男一女,兩女,故總的選法有C32+C41×C31+C42=21
故總的選法有2880-21×A44=2376
故不同的選法種數(shù)是2376種

點評 本題考查排列、組合及簡單計數(shù)問題,解題的關(guān)鍵是正確理解題設(shè)中的事件,及理解計數(shù)原理,本題考查了分類的及運算的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點為F,以F為圓心和雙曲線的漸近線相切的圓與雙曲線的一個交點為M,且MF與雙曲線的實軸垂直,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,一個小球做簡諧運動,當(dāng)時間t=0s時,小球在平衡位置,當(dāng)t=1s時,小球第一次達到偏離平衡位置最大距離,這時小球離開平衡位置2cm,若該簡諧運動的解析式為y=Asin(ωt+φ),則A,ω,φ的值分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某賽季甲乙兩名籃球運動員每場比賽得分的原始記錄如下:
甲運動員得分:30,27,9,14,33,25,21,12,36,23,
乙運動員得分:49,24,12,31,50,31,44,36,15,37,25,36,39
(1)根據(jù)兩組數(shù)據(jù)完成甲乙運動員得分的莖葉圖,并通過莖葉圖比較兩名運動員成績的平均值及穩(wěn)定程度;(不要求計算出具體數(shù)值,給出結(jié)論即可)
(2)若從甲運動員的十次比賽的得分中選出2個得分,記選出的得分超過23分的個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a2+b2+$\sqrt{2}$ab=c2,則C=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“經(jīng)過圓外一點與圓相切的直線至少有一條”的否定是(  )
A.經(jīng)過圓外一點與圓相切的直線至多有兩條
B.經(jīng)過圓外一點與圓相切的直線有兩條
C.經(jīng)過圓外一點與圓相切的直線不存在
D.經(jīng)過圓外一點與圓相切的直線至多有一條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.證明二項式定理(a+b)n=Cn0an+Cn1an-1b+Cn2an-2b2+…+Cnran-rbr+…+Cnnbn,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.假設(shè)小華和小明所在的班級共有50名學(xué)生,并且這50名學(xué)生早上到校先后的可能性是相同的.則小華比小明先到校的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.給出下列命題:
①把函數(shù)y=sin(x-$\frac{π}{3}$)圖象上所有點的橫坐標縮短到原來的$\frac{1}{2}$倍,縱坐標不變,得到函數(shù)y=sin(2x-$\frac{π}{3}$);
②若α,β是第一象限角且α<β,則cosα>cosβ;
③x=-$\frac{π}{8}$是函數(shù)y=cos(2x+$\frac{5}{4}$π)的一條對稱軸;
④函數(shù)y=4sin(2x+$\frac{π}{3}$)與函數(shù)y=4cos(2x-$\frac{π}{6}$)相同;
⑤y=2sin(2x-$\frac{π}{3}$)在[0,$\frac{π}{2}$]是增函數(shù);
則正確命題的序號①③④.

查看答案和解析>>

同步練習(xí)冊答案