8.計算下列各值.
(1)8${\;}^{\frac{2}{3}}$+($\frac{1}{3}$)0-log28+$\sqrt{9}$
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$.

分析 (1)利用指數(shù)冪的運算性質即可得出.
(2)利用對數(shù)的運算性質即可得出.

解答 解:(1)原式=${2}^{3×\frac{2}{3}}$+1-3+3=4+1=5.
(2)原式=$\frac{lg12}{1+lg(0.6×2)}$=$\frac{lg12}{lg(10×1.2)}$=1.

點評 本題考查了指數(shù)冪與對數(shù)的運算性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合M={x|x2-3x≥0},N={x|1<x≤3},則(∁RM)∩N=( 。
A.[0,1)B.(0,3]C.(1,3)D.[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.直線y=kx與雙曲線x2-$\frac{{y}^{2}}{3}$=1無公共點,則k的取值范圍為k≤-$\sqrt{3}$或k≥$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知x>0,y>0,且x+2y=2,則2x+4y的最小值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度),設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面的建造成本為50元/平方米,底面的建造成本為100元/平方米.該蓄水池總建造成本為10800π元.(π為圓周率)
(Ⅰ)將V表示為r的函數(shù)V(r),并求該函數(shù)的定義域;
(Ⅱ)討論函數(shù)V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知a∈R,函數(shù)$f(x)=\frac{a}{x}+lnx-1$.
(Ⅰ)當曲線y=f(x)在點(1,f(1))處的切線與直線$y=\frac{1}{2}x-1$垂直時,求a的值;
(Ⅱ)求f(x)在區(qū)間(0,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知cos(75°+α)=$\frac{1}{2}$,α是第三象限的角,則cos(105°-α)+sin(α-105°)的值為-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=e3x-6-3x,求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.給出定義:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作[x]=m.在此基礎上給出下列關于函數(shù)f(x)=|x-[x]|的四個結論:
①函數(shù)y=f(x)的定義域為R,值域為[0,$\frac{1}{2}}$];
②函數(shù)y=f(x)的圖象關于直線x=$\frac{k}{2}$(k∈Z)對稱;
③函數(shù)y=f(x)是偶函數(shù);
④函數(shù)y=f(x)在[-$\frac{1}{2}$,$\frac{1}{2}}$]上是增函數(shù),其中正確的結論的序號是(  )
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

同步練習冊答案