分析 本題考查的知識點是同角三角函數(shù)關系運算及誘導公式,我們分析已知角與未知角的關系,易得75°+α為第四象限的角,原式可化為cos[180°-(75°+α)]+sin[(75°+α)-180°]結合同角三角函數(shù)關系運算及誘導公式,對式子進行化簡,不難給出答案
解答 解:方法一:∵cos(75°+α)=$\frac{1}{2}$,α是第三象限的角,其中α為第三象限角,
∴75°+α為第四象限的角
∴75°+α=-60°,
∴α=-135°,
∴cos(105°-α)+sin(α-105°)=cos(-240°)+sin(-240°)=-sin60°+sin60°=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$
方法二:∵cos(75°+α)=$\frac{1}{2}$,α是第三象限的角,其中α為第三象限角
∴75°+α為第四象限的角
∴sin(75°+α)=-$\frac{\sqrt{3}}{2}$
則cos(105°-α)+sin(α-105°)
=cos[180°-(75°+α)]+sin[(75°+α)-180°]
=-cos(75°+α)]-sin(75°+α)
=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,
故答案為:-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$
點評 三角函數(shù)給值求值問題的關鍵就是分析已知角與未知角的關系,然后通過角的關系,選擇恰當?shù)墓,即:如果角與角相等,則使用同角三角函數(shù)關系;如果角與角之間的和或差是直角的整數(shù)倍,則使用誘導公式;如果角與角之間存在和差關系,則我們用和差角公式;如果角與角存在倍數(shù)關系,則使用倍角公式.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com