精英家教網 > 高中數學 > 題目詳情
已知橢圓的焦點是F1(0,-
3
),F2(0,
3
)
,點P在橢圓上且滿足|PF1|+|PF2|=4,則橢圓的標準方程是______.
∵橢圓的焦點是F1(0,-
3
),F2(0,
3
)
,
點P在橢圓上且滿足|PF1|+|PF2|=4,
∴橢圓的焦點在y軸上,且a=2,c=
3
,
∴b2=4-3=1,
∴橢圓的標準方程是x2+
y2
4
=1

故答案為:x2+
y2
4
=1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

一動圓P與兩圓O1x2+y2=1O2x2+y2-8x+7=0均內切,那么動圓P圓心的軌跡是( 。
A.橢圓B.拋物線
C.雙曲線D.雙曲線的一支

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在直角坐標系xoy中,“方程
x2
m2
+
y2
n2
=1
表示橢圓”是“m>n>0”的(  )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分條件又不必要條件

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,離心率為
1
2
,且點(1,
3
2
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的左焦點F1的直線l與橢圓C相交于A,B兩點,若△AOB的面積為
6
2
7
,求圓心在原點O且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓
x2
m
+
y2
3
=1
的右焦點與拋物線y2=12x的焦點重合,則m=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若方程
x2
25-k
+
y2
k-9
=1表示橢圓,則k的取值范圍是( 。
A.(9,17)B.(9,25)C.(9,17)∪(17,25)D.(-∞,9)∪(25,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知△ABC的周長是16,A(-3,0),B(3,0),則動點C的軌跡方程是( 。
A.
x2
25
+
y2
16
=1
B.
x2
25
+
y2
16
=1(y≠0)
C.
x2
16
+
y2
25
=1
D.
x2
16
+
y2
25
=1(y≠0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓過點(3,0)且離心率為
6
3
,則橢圓標準方程為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過橢圓
x2
16
+
y2
9
=1
的一個焦點F1的直線與橢圓交于A,B兩點,則A,B與橢圓的另一個焦點F2構成△ABF2,則△ABF2的周長是______.

查看答案和解析>>

同步練習冊答案