(本題滿分12分)
等差數(shù)列的各項均為正數(shù),,前項和為為等比數(shù)列, ,且 
(1)求
(2)求數(shù)列的前項和。

(1) (1)

解析試題分析:(1)設(shè)的公差為,的公比為,則為正整數(shù),
,      
依題意有,即,
解得或者(舍去),
。
(2)。

,
兩式相減得
,
所以。
考點:等差數(shù)列和等比數(shù)列
點評:解決的關(guān)鍵是能根據(jù)錯位相減法來準確的求解數(shù)列的和,易錯點是對于項數(shù)的準確求解,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知公差大于零的等差數(shù)列的前n項和為,且滿足:,
(1)求數(shù)列的通項公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)c;
(3)在(2)的條件下,設(shè),已知數(shù)列為遞增數(shù)列,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項的和為,且 ().
(1) 求數(shù)列的通項公式;
(2) 記,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列滿足:,,的前n項和為
(Ⅰ)求
(Ⅱ)令bn=(nN*),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知等差數(shù)列的公差, 是等比數(shù)列,又。
(1)求數(shù)列及數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列滿足:,的前n項和為
(Ⅰ)求;
(Ⅱ)令 bn= (nN*),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)數(shù)列的前項和記為
(Ⅰ)求的通項公式;
(Ⅱ)等差數(shù)列的各項為正,其前項和為,且,又成等比數(shù)列,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列滿足:,.的前n項和為.
(1)求 及
(2)若 ,),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和
(1)求數(shù)列的通項公式;
(2)求的最大或最小值。

查看答案和解析>>

同步練習冊答案