已知數(shù)列{bn}的前n項(xiàng)和=n2n.?dāng)?shù)列{}滿足(3=4﹣(bn+2),n∈N*,數(shù)列{cn}滿足cn=bn
(1)求數(shù)列{cn}的前n項(xiàng)和Tn;
(2)若cnm2+m﹣1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
解:(1)由已知得,
當(dāng)n≥2時(shí),bn=﹣1=(n2n)﹣[(n﹣1)2(n﹣1)]=3n﹣2
又b1=1=3×1﹣2,符合上式,
故數(shù)列{bn}的通項(xiàng)公式為bn=3n﹣2.
∵數(shù)列{}滿足(3=4﹣(bn+2)
∴(3=4﹣3n
=4﹣n,
∴cn=bn=(3n﹣2)×4﹣n,
∴Tn=1×4﹣1+4×4﹣2+…+(3n﹣2)×4﹣n,①
Tn=1×4﹣2+4×4﹣3+…+(3n﹣2)×4﹣n﹣1,②
①﹣②得Tn=4﹣1+3[4﹣2+4﹣3+…+4﹣n]﹣(3n﹣2)×4﹣n﹣1=﹣(3n﹣2)×4﹣n﹣1,
∴Tn=×4﹣n;                                  
(2)∵cn=bn=(3n﹣2)×4﹣n
∴cn+1﹣cn=(3n+1)×4﹣n﹣1﹣(3n﹣2)×4﹣n=﹣9(n﹣1)×4﹣n﹣1,
當(dāng)n=1時(shí),cn+1=cn;
當(dāng)n≥2時(shí),cn+1<cn,
∴(cnmax=c1=c2=
若cnm2+m﹣1對(duì)一切正整數(shù)n恒成立,則m2+m﹣1≥即可,
∴m2+4m﹣5≥0,
∴m≤﹣5或m≥1.        
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1且點(diǎn)(n,Sn+n+2)在函數(shù)f(x)=log2x-1的反函數(shù)y=f-1(x)的圖象上.若數(shù)列{an}滿足a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
) (n≥2,n∈N*)

(Ⅰ)求bn
(Ⅱ)求證:
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)
;
(Ⅲ)求證:(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)•…•(1+
1
an
)<
10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

.在等比數(shù)列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又2是a3與a5的等比中項(xiàng).設(shè)bn=5-log2an
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,Tn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{bn}的前n項(xiàng)和Sn=
3
2
n2-
1
2
n.?dāng)?shù)列{an}滿足(an3=4-(bn+2)n∈N*,數(shù)列{cn}滿足cn=anbn
(1)求數(shù)列{cn}的前n項(xiàng)和Tn
(2)若cn
1
4
m2+m-1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{bn}的前n項(xiàng)和Sn滿足bn=2-2Sn,則數(shù)列{bn}的通項(xiàng)公式bn=
2(
1
3
)n
2(
1
3
)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列1,a,b,等比數(shù)列3,a+2,b+5.
求:
(1)以1,a,b為前三項(xiàng)的等差數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的前n項(xiàng)和為Tn,且其通項(xiàng)bn=
1anan+1
,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案