【題目】如圖,在四棱錐中,四邊形為矩形,平面平面,中點(diǎn),.

1)求證:

2)若與平面所成的角為,求二面角的大小.

【答案】1)證明見解析;(2.

【解析】

1)由面面垂直的性質(zhì)定理可得出平面,可得出,由等腰三角形三線合一的性質(zhì)可得出,由此可得出平面,進(jìn)而得出;

2)設(shè),可得出,由(1)可知,與平面所成的角為,可得,進(jìn)而以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求出二面角的大小.

1四邊形為矩形,則,

平面平面,平面平面,平面,

所以,平面,,

,中點(diǎn),,

平面,

平面,故;

2)不妨設(shè),由,由(1)得,∴,∴,由(1)得平面,

由(1)知,在平面的射影為,即

,故.

以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,

易得、、,,

,,,

設(shè)平面與平面的法向量分別為,

,

,令,則,,

,設(shè)二面角的大小為,則,所以二面角的大小

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016114日,國防科工局宣布,嫦娥四號任務(wù)已經(jīng)通過了探月工程重大專項(xiàng)領(lǐng)導(dǎo)小組審議通過,正式開始實(shí)施.如圖所示,假設(shè)“嫦娥四號”衛(wèi)星將沿地月轉(zhuǎn)移軌道飛向月球后,在月球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行.若用分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用分別表示橢圓軌道Ⅰ和Ⅱ的長軸長,給出下列式子:①;②;③;④.其中正確式子的序號是( )

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在水平地面上的不同兩點(diǎn)處栽有兩根筆直的電線桿,假設(shè)它們都垂直于地面,則在水平地面上視它們上端仰角相等的點(diǎn)的軌跡可能是(

①直線 ②圓 ③橢圓 ④拋物線

A.①②B.①③C.①②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

1)求的交點(diǎn)的直角坐標(biāo);

2)求上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為,左、右焦點(diǎn)分別為,,離心率為.

1)求橢圓的方程;

2)過右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),試探究在軸上是否存在定點(diǎn),使得可為定值?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知平行于軸的動直線交拋物線 于點(diǎn),點(diǎn)的焦點(diǎn).圓心不在軸上的圓與直線, , 軸都相切,設(shè)的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線, 分別與軸相交于點(diǎn) .當(dāng)線段的長度最小時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(x0).

1)當(dāng)0ab,且fa)=fb)時(shí),求證:ab1;

2)是否存在實(shí)數(shù)a,bab),使得函數(shù)yfx)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請說明理由.

3)若存在實(shí)數(shù)a,bab),使得函數(shù)yfx)的定義域?yàn)?/span>[a,b]時(shí),值域?yàn)?/span>[ma,mb]m≠0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對稱;丁:不是函數(shù)的最小值.老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確.那么,你認(rèn)為____說的是錯(cuò)誤的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校將甲、乙等6名新招聘的老師分配到4個(gè)不同的年級,每個(gè)年級至少分配1名教師,且甲、乙兩名老師必須分到同一個(gè)年級,則不同的分法種數(shù)為______

查看答案和解析>>

同步練習(xí)冊答案