5.雙曲線a2x2-$\frac{a}{3}$y2=1的一個焦點(diǎn)是(-2,0),則a等于( 。
A.-$\frac{1}{4}$B.1C.-$\frac{1}{4}$或1D.$\frac{1}{4}$或-1

分析 根據(jù)雙曲線的焦點(diǎn)坐標(biāo)建立方程關(guān)系進(jìn)行求解即可.

解答 解:雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{\frac{1}{{a}^{2}}}-\frac{{y}^{2}}{\frac{3}{a}}$=1,
∵雙曲線a2x2-$\frac{a}{3}$y2=1的一個焦點(diǎn)是(-2,0),
∴c=2,且$\frac{3}{a}$>0,
則a>0,且$\frac{1}{{a}^{2}}$+$\frac{3}{a}$=c2=4,
即4a2-3a-1=0,
得a=1或a=-$\frac{1}{4}$(舍),
故選:B.

點(diǎn)評 本題主要考查雙曲線的方程和性質(zhì),根據(jù)雙曲線的焦點(diǎn)坐標(biāo)建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=2x-2,則不等式f(x-1)≤2的解集是[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且$\overrightarrow{a}$與$\overrightarrow$不共線,則|$\overrightarrow{a}$-$\overrightarrow$|的范圍是(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在等差數(shù)列{an}中,a2=3,a5=12,則a8=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinωx(ω>0)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的周期T;
(2)求函數(shù)y=f(x)的解析式,并補(bǔ)充函數(shù)在區(qū)間[$\frac{π}{2}$,π]的圖象;
(3)判斷函數(shù)y=f(x)在區(qū)間[$\frac{3π}{4}$,π]上是增函數(shù)還是減函數(shù),并指出函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F,雙曲線C與過原點(diǎn)的直線相交于A、B兩點(diǎn),連接AF,BF.若|AF|=6,|BF|=8,$cos∠BAF=\frac{3}{5}$,則該雙曲線的離心率為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$共同的漸近線,且過點(diǎn)(-3,2)的雙曲線的標(biāo)準(zhǔn)方程是( 。
A.$\frac{y^2}{8}-\frac{x^2}{6}=1$B.$\frac{x^2}{6}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{y^2}{9}-\frac{x^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.經(jīng)過雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的左頂點(diǎn)、虛軸上端點(diǎn)、右焦點(diǎn)的圓的方程是x2+y2-2x+$\frac{1}{4}$y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.雙曲線x2-$\frac{{y}^{2}}{3}$=1的焦點(diǎn)坐標(biāo)為(-2,0),(2,0).

查看答案和解析>>

同步練習(xí)冊答案