A. | 1 | B. | 0 | C. | -1 | D. | -$\frac{28}{25}$ |
分析 由題意設(shè)出M、N的坐標(biāo),聯(lián)立直線與圓的方程,利用根與系數(shù)的關(guān)系得到M、N的橫縱坐標(biāo)的積,代入數(shù)量積的坐標(biāo)運算得答案.
解答 解:聯(lián)立$\left\{\begin{array}{l}{3x+4y+5=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,消去y得25x2+30x-39=0.
則${x}_{1}+{x}_{2}=\frac{-30}{25}$,${x}_{1}{x}_{2}=\frac{-39}{25}$,
${y}_{1}{y}_{2}=\frac{15}{16}({x}_{1}+{x}_{2})+\frac{9}{16}{x}_{1}{x}_{2}+\frac{25}{16}$=$\frac{15}{16}×(-\frac{30}{25})$$+\frac{9}{16}×(-\frac{39}{25})$+$\frac{25}{16}$=$\frac{11}{25}$.
∴$\overrightarrow{OM}•\overrightarrow{ON}$=${x}_{1}{x}_{2}+{y}_{1}{y}_{2}=-\frac{39}{25}+\frac{11}{25}$=-$\frac{28}{25}$.
故選:D.
點評 本題考查直線與圓的位置關(guān)系,考查了平面向量的數(shù)量積運算,是基礎(chǔ)的計算題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x+1| | B. | y=3-x | C. | y=$-\frac{1}{x}$ | D. | y=x2-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$ | B. | ?x∈R,使$3_{\;}^x+4_{\;}^x<5_{\;}^x$ | ||
C. | ?x∈R,使$3_{\;}^x+4_{\;}^x>5_{\;}^x$ | D. | ?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com