分析 通過圓的方程求出圓心坐標與半徑,求出圓心到直線的距離,利用圓心到直線的距離、圓的半徑、半弦長的關系,即可得出結論.
解答 解:圓x2+y2+2x-2y+a=0化為(x+1)2+(y-1)2=2-a,
所以圓的圓心坐標(-1,1),半徑為:$\sqrt{2-a}$,
圓心到直線x+y+2=0的距離為:d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
圓心到直線的距離、圓的半徑、半弦長滿足勾股定理,即半弦長為:2=$\sqrt{2-a-2}$.
所以a=-4.
故答案為-4.
點評 本題考查直線與圓的位置關系,注意圓心到直線的距離、圓的半徑、半弦長滿足勾股定理,解題比較簡潔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±$\frac{\sqrt{2}}{2}$ | B. | ±$\frac{\sqrt{3}}{2}$ | C. | ±$\frac{\sqrt{5}}{2}$ | D. | ±$\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -1 | D. | -$\frac{28}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\hat y=2x+4$ | B. | $\hat y=x+4$ | C. | $\hat y=-2x+4$ | D. | $\hat y=-x+4$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-3≤x≤1} | B. | {x|-4<x≤-3}∪{x|1≤x<4} | C. | {1,2,3} | D. | {x|-3,-2,-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $4\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{11}$ | C. | -$\frac{1}{13}$ | D. | -$\frac{1}{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com