6.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸的正半軸重合,直線(xiàn)l的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=\frac{{3\sqrt{2}}}{2}$,曲線(xiàn)C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}}\right.$(α是參數(shù)).
(1)求直線(xiàn)l的直角坐標(biāo)方程及曲線(xiàn)C的普通方程;
(2)求曲線(xiàn)C上的點(diǎn)到直線(xiàn)l的最大距離.

分析 (1)利用極坐標(biāo)與直角坐標(biāo),參數(shù)方程與普通方程的互化方法求直線(xiàn)l的直角坐標(biāo)方程及曲線(xiàn)C的普通方程;
(2)利用參數(shù)方程,求曲線(xiàn)C上的點(diǎn)到直線(xiàn)l的最大距離.

解答 解:(1)由$ρsin(θ+\frac{π}{4})=\frac{{3\sqrt{2}}}{2}$得:$ρsinθcos\frac{π}{4}+ρcosθsin\frac{π}{4}=\frac{{3\sqrt{2}}}{2}⇒\frac{{\sqrt{2}}}{2}y+\frac{{\sqrt{2}}}{2}x=\frac{{3\sqrt{2}}}{2}⇒x+y-3=0$,
由$\left\{{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}}\right.$得$\left\{{\begin{array}{l}{x=cosα}\\{\frac{y}{{\sqrt{3}}}=sinα}\end{array}}\right.$平方相加得:${x^2}+\frac{y^2}{3}=1$.
(2)∵$d=\frac{{|{cosα+\sqrt{3}sinα-3}|}}{{\sqrt{{1^2}+{1^2}}}}=\frac{{|{2sin(α+\frac{π}{6})-3}|}}{{\sqrt{2}}}$,
∴${d_{max}}=\frac{5}{{\sqrt{2}}}=\frac{{5\sqrt{2}}}{2}$.

點(diǎn)評(píng) 本題考查極坐標(biāo)與直角坐標(biāo),參數(shù)方程與普通方程的互化,考查點(diǎn)到直線(xiàn)距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若f(x)=-x2+2ax與g(x)=$\frac{a}{x}$在區(qū)間[1,2]上都是減函數(shù),則實(shí)數(shù)a的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知O:x2+y2=1和點(diǎn)$P(-1,\sqrt{3})$,A、B是圓O上兩個(gè)動(dòng)點(diǎn),則∠APB的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過(guò)點(diǎn)P(-1,0)的直線(xiàn)l與拋物線(xiàn)y2=5x相切,則直線(xiàn)l的斜率為( 。
A.±$\frac{\sqrt{2}}{2}$B.±$\frac{\sqrt{3}}{2}$C.±$\frac{\sqrt{5}}{2}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知等差數(shù)列{an}滿(mǎn)足a1>0,8a5=13al1,則前n項(xiàng)和Sn取最大值時(shí),n的值為( 。
A.19B.20C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在數(shù)列{an}中,a1=$\frac{1}{2}$,對(duì)任意的n∈N*,都有$\frac{1}{(n+1)a_{n+1}}$=$\frac{na_n+1}{na_n}$成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn;并求滿(mǎn)足Sn<$\frac{15}{16}$時(shí)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|-3≤x≤6},B={x|2a-1≤x≤a+1};
(1)若a=-2,求A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線(xiàn)3x+4y+5=0與圓x2+y2=4交于M,N兩點(diǎn),則$\overrightarrow{OM}•\overrightarrow{ON}$(O為坐標(biāo)原點(diǎn))等于( 。
A.1B.0C.-1D.-$\frac{28}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)雙曲線(xiàn)$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$與$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$(a>0,b>0)的離心率分別為e1,e2,當(dāng)a,b發(fā)生變化時(shí),求$e_1^2+e_2^2$的最小值( 。
A.4B.$4\sqrt{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案