分析 根據(jù)雙曲線的漸近線以及條件求出a,c的值,結(jié)合雙曲線的定義進(jìn)行求解即可.
解答 解:雙曲線的漸近線方程為y=±$\frac{a}$x,
則$\frac{a}$=$\frac{3}{2}$,即b=$\frac{3}{2}$a,
∵兩焦點(diǎn)間距離為2$\sqrt{13}$,
∴2c=2$\sqrt{13}$,即c=$\sqrt{13}$,
則b2=$\frac{9}{4}$a2=c2-a2,
即$\frac{13}{4}$a2=13,則a2=4,a=2,
∵|PF1|=3<a+c=$\sqrt{13}$+2,
∴點(diǎn)P在雙曲線的左支上,
則|PF2|-|PF1|=2a=4,
即|PF2=4+|PF1|=4+3=7,
故答案為:7.
點(diǎn)評(píng) 本題主要考查雙曲線方程的應(yīng)用,根據(jù)條件建立方程組關(guān)系求出a,c的值結(jié)合雙曲線的定義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1±$\sqrt{2}$ | B. | 1+$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱 | B. | 關(guān)于點(diǎn)($\frac{π}{3}$,0)對(duì)稱 | ||
C. | 關(guān)于直線x=$\frac{π}{6}$對(duì)稱 | D. | 關(guān)于直線x=$\frac{π}{3}$對(duì)稱 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com