【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)求證:或是函數(shù)在上有三個不同零點的必要不充分條件.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,沒有單調(diào)遞減區(qū)間. (2) (3)見解析
【解析】
(1)將參數(shù)值k代入解析式,對函數(shù)求導,得到導函數(shù)大于0,進而得到函數(shù)只有增區(qū)間沒有減區(qū)間;(2)對函數(shù)求導,在區(qū)間上不單調(diào)所以在上有實數(shù)解,且無重根,變量分離即方程有解,通過換元得到新函數(shù)的單調(diào)性,對方程的根進行討論即可;(3)證明:或則函數(shù)在上不能有三個不同零點,證明,函數(shù)有3個不同零點則或即可.
(1)若k=-1,則,所以
由于△=16-48<0,
所以函數(shù)的單調(diào)遞增區(qū)間為,沒有單調(diào)遞減區(qū)間.
(2)因
,因在區(qū)間上不單調(diào),
所以在上有實數(shù)解,且無重根,
由得
令有,記則,
所以在 上,h(t)單調(diào)遞減,在 上, h(t)單調(diào)遞增,
所以有,于是得
而當時有在上有兩個相等的實根,故舍去
所以.
(3)因為
所以,當△=,即時
函數(shù)在R上單調(diào)遞增
故在R上不可能有三個不同零點
所以,若在R上有三個不同零點,則必有△,
即是在R上有三個不同零點的必要條件.
而當,時,滿足
但
即此時只有兩個不同零點
同樣,當時,滿足,
但
即此時也只有兩個不同零點
故k<-2或k>7是在R上有三個不同零點的必要不充分條件.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且,其中為奇函數(shù),為偶函數(shù)。若關于x的方程上在有解,則實數(shù)a的取值范圍是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了人進行分析,得到如下列聯(lián)表(單位:人).
經(jīng)常使用 | 偶爾使用或不使用 | 合計 | |
歲及以下 | |||
歲以上 | |||
合計 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為市使用共享單車的情況與年齡有關;
(2)(i)現(xiàn)從所選取的歲以上的網(wǎng)友中,采用分層抽樣的方法選取人,再從這人中隨機選出人贈送優(yōu)惠券,求選出的人中至少有人經(jīng)常使用共享單車的概率;
(ii)將頻率視為概率,從市所有參與調(diào)查的網(wǎng)友中隨機選取人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)設點.若直與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了積極支持雄安新區(qū)建設,某投資公司計劃明年投資1000萬元給雄安新區(qū)甲、乙兩家科技企業(yè),以支持其創(chuàng)新研發(fā)計劃,經(jīng)有關部門測算,若不受中美貿(mào)易戰(zhàn)影響的話,每投入100萬元資金,在甲企業(yè)可獲利150萬元,若遭受貿(mào)易戰(zhàn)影響的話,則將損失50萬元;同樣的情況,在乙企業(yè)可獲利100萬元,否則將損失20萬元,假設甲、乙兩企業(yè)遭受貿(mào)易戰(zhàn)影響的概率分別為0.6和0.5.
(1)若在甲、乙兩企業(yè)分別投資500萬元,求獲利1250萬元的概率;
(2)若在兩企業(yè)的投資額相差不超過300萬元,求該投資公司明年獲利約在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是一個“數(shù)陣”:
1 | ( ) | ( ) | ( ) | … | … | |
( ) | 1 | ( ) | ( ) | … | … | |
( ) | ( ) | ( ) | 1 | … | … | |
… | … | … | … | … | … | … |
… | … | |||||
… | … | … | … | … | … | … |
其中每行都是公差不為0等差數(shù)列,每列都是等比數(shù)列,表示位于第i行第j列的數(shù).
(1)寫出的值:
(2)寫出的計算公式,以及第2020個1所在“數(shù)陣”中所在的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,橢圓:與雙曲線:的焦點相同.
(1)求橢圓與雙曲線的方程;
(2)過雙曲線的右頂點作兩條斜率分別為,的直線,,分別交雙曲線于點,(,不同于右頂點),若,求證:直線的傾斜角為定值,并求出此定值;
(3)設點,若對于直線,橢圓上總存在不同的兩點與關于直線對稱,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有以下說法:
①一年按365天計算,兩名學生的生日相同的概率是;②買彩票中獎的概率為0.001,那么買1 000張彩票就一定能中獎;③乒乓球賽前,決定誰先發(fā)球,抽簽方法是從1~10共10個數(shù)字中各抽取1個,再比較大小,這種抽簽方法是公平的;④昨天沒有下雨,則說明“昨天氣象局的天氣預報降水概率是90%”是錯誤的.
根據(jù)我們所學的概率知識,其中說法正確的序號是___.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)用分段函數(shù)的形式表示函數(shù)f(x);
(2)在平面直角坐標系中畫出函數(shù)f(x)的圖象;
(3)在同一平面直角坐標系中,再畫出函數(shù)g(x)= (x>0)的圖象(不用列表),觀察圖象直接寫出當x>0時,不等式f(x)> 的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com