設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為y=2,則拋物線的方程是( 。
A、x2=8y
B、x2=-8y
C、y2=-8x
D、y2=-8x
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意確定出拋物線開口向下,且p=4,代入拋物線的標(biāo)準(zhǔn)方程即可.
解答: 解:因?yàn)閽佄锞的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為y=2,
所以拋物線開口向下,且p=4,
則拋物線的方程是x2=-8y,
故選:B.
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程,確定出拋物線開口方向是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知點(diǎn)(2,2)在直線y=kx+b上,且原點(diǎn)到該線的距離為1,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)方程ρ=10sinθ表示( 。
A、以(10,
π
2
)為圓心,5為半徑的圓
B、以(5,0)為圓心,5為半徑的圓
C、以(10,0)為圓心,5為半徑的圓
D、以(5,
π
2
)為圓心,5為半徑的圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x))滿足(x+2)=
1
f(x)
,若f(1)=2,則f(99)=(  )
A、1
B、3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-x(e為自然對(duì)數(shù)的底數(shù)).
(1)求f(x)的最小值;
(2)若不等式f(x)>ax的解集為P,若M={x|
1
2
≤x≤
3
2
},且M∩P≠φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
3
sinx-cosx)cosx的值域是(  )
A、[-
3
2
,
1
2
]
B、[-
3
2
,0]
C、[-
3
,
1
2
]
D、[-
3
,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在橢圓
x2
a2
+
y2
8
=1(a>0)中,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),B、D分別為橢圓的左、右頂點(diǎn),A為橢圓在第一象限內(nèi)的任意一點(diǎn),直線AF1交橢圓于另一點(diǎn)C,交y軸于點(diǎn)E,且點(diǎn)F1、F2三等分線段BD.
(Ⅰ)求a的值;
(Ⅱ)若四邊形EBCF2為平行四邊形,求點(diǎn)C的坐標(biāo);
(Ⅲ)當(dāng)S△AF1O=S△CEO時(shí),求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O是坐標(biāo)原點(diǎn),P是橢圓
x=3cosϕ
y=2sinϕ
(ϕ為參數(shù))上離心角為-
π
6
所對(duì)應(yīng)的點(diǎn),那么直線OP的傾斜角的正切值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A、y=(x-1)2
B、y=
1
x
C、y=ex
D、y=ln(x+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案