函數(shù)f(x)=2x|log0.5x|-1的圖象與x軸交點個數(shù)為
 
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=2x|log0.5x|-1的圖象與x軸的交點個數(shù),就是函數(shù)的零點的個數(shù),將方程的解轉(zhuǎn)化為函數(shù)圖象的交點問題,從而判斷函數(shù)的零點個數(shù).
解答: 解:函數(shù)y=2x|log0.5x|-1的圖象與x軸的交點個數(shù),就是f(x)=2x|log0.5x|-1的零點個數(shù),即方程2x|log0.5x|-1=0的根,
即2x|log0.5x|=1,|log0.5x|=(
1
2
x,
在同一坐標(biāo)系中畫出函數(shù)y=|log0.5x|與y=(
1
2
x圖象,
由圖象知這兩個函數(shù)圖象有2個交點,
即函數(shù)f(x)=2x|log0.5x|-1的圖象與x軸的交點個數(shù)為2,
故答案為:2.
點評:本題考查函數(shù)的零點,函數(shù)的圖象的作法,考查數(shù)形結(jié)合與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過原點且傾斜角為60°的直線被圓x2+2-4y=0所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

西安市某省級示范高中為了了解學(xué)校食堂的服務(wù)質(zhì)量情況,對在校就餐的1400名學(xué)生按5%比例進行問卷調(diào)查,把學(xué)生對食堂的“服務(wù)滿意度”與“價格滿意度”都分為五個等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統(tǒng)計結(jié)果如下表所示(服務(wù)滿意度為x,價格滿意度為y).
價格滿意度
12345

務(wù)
滿

111220
221341
337884
414641
501231
(Ⅰ)作出“價格滿意度”的頻率分布直方圖;
(Ⅱ)為改進食堂服務(wù)質(zhì)量,現(xiàn)從滿足“x≤5且y<3”的人中隨機選取2人參加座談會,記其中滿足“x<3且y=1”的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若隨機變量ξ的分布列如右:
ξ124
P0.40.30.3
那么E(5ξ+4)等于( 。
A、15B、11
C、2.2D、2.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
m2x+
2
2x+1
是奇函數(shù).
(1)求m;
(2)求f(x)的值域;
(3)判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列
3
5
,
1
2
,
5
11
3
7
,
7
17
,…的一個通項公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x+2y+2-a=0被圓C:x2+y2-2x+2y=0截得的弦長為
6
5
5
,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果兩個函數(shù)的圖象僅經(jīng)過平移或?qū)ΨQ變換后能夠重合的,則稱這樣的兩個函數(shù)為“同胞函數(shù)”.現(xiàn)在給出下列函數(shù):①f(x)=sinxcosx;②f(x)=
2
sin2x+1;③f(x)=2sin(-x+
π
4
);④f(x)=sinx+
3
cosx.其中是“同胞函數(shù)”的有( 。
A、①②B、①④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點M(1,2)的直線l與圓C:(x-2)2+y2=9交于A、B兩點,C為圓心,當(dāng)點C到直線l的距離最大時,直線l的方程為( 。
A、x=1
B、y=1
C、x-y+1=0
D、x-2y+3=0

查看答案和解析>>

同步練習(xí)冊答案