精英家教網 > 高中數學 > 題目詳情

如果0,則a,b滿足     

答案:
解析:


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
5
9

(Ⅰ)若右圖為統(tǒng)計這次比賽的局數n和甲、乙的總得分數S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設ξ表示比賽停止時已比賽的局數,求隨機變量ξ的分布列和數學期望Eξ.
注:“n=0”,即為“n←0”或為“n:=0”.

查看答案和解析>>

科目:高中數學 來源: 題型:

甲乙兩人進行圍棋比賽行約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為P(P
1
2
),且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
5
9
.若圖為統(tǒng)計這次比賽的局數n和甲、乙的總得分數S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(Ⅰ)在圖中,第一、第二兩個判斷框應分別填寫什么條件?
(Ⅱ)求P的值;
(Ⅲ)求比賽到第4局時停止的概率P4,以及比賽到第6局時停止的概率p6

查看答案和解析>>

科目:高中數學 來源: 題型:

在第十六屆廣州亞運會上,某項目的比賽規(guī)則為:由兩人(記為甲和乙)進行比賽,每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為p(p>0.5),且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
59

(Ⅰ)求實數p的值;
(Ⅱ)如圖為統(tǒng)計比賽的局數n和甲、乙的總得分數S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應分別填寫什么條件;
(Ⅲ)設ζ表示比賽停止時已比賽的局數,求隨機變量ζ的分布列和數學期望Eζ.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•許昌三模)甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分.比賽進行到有一人比對方多2分或打滿6局時停止,設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立,已知第二局比賽結束時比賽停止的概率為
5
9
,若右圖為統(tǒng)計這次比賽的局數和甲乙的總得分數S,T的程序框圖,其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(I)求p的值;
(Ⅱ)設ξ表示比賽停止時已比賽的局數,求隨機變量ξ的分布列數學望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

甲、乙兩同學進行下棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一個人比對方多2分或比滿8局時停止,設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
5
8

(I)如圖為統(tǒng)計這次比賽的局數n和甲、乙的總得分S,T的程序框圖.其中如果甲獲勝,輸人a=l.b=0;如果乙獲勝,則輸人a=0,b=1.請問在①②兩個判斷框中應分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設ξ表示比賽停止時已比賽的局數,求隨機變量ξ的分布列和Eξ.

查看答案和解析>>

同步練習冊答案