分析 (1)不等式等價(jià)于|x|+|x-2|≤2,再利用絕對值的意義求得x的范圍.
(2)由條件利用基本不等式證得結(jié)論成立.
解答 解:(1)函數(shù)f(x)=|x|,∴f(x-2)=|x-2|,不等式f(x-2)≤2-f(x),
等價(jià)于|x-2|≤2-|x|,即|x|+|x-2|≤2.
|x|+|x-2|表示數(shù)軸上的x對應(yīng)點(diǎn)到0、2的距離之和,它的最小值為2,此時(shí),0≤x≤2,
故不等式f(x-2)≤2-f(x)的解集為[0,2].
(2)證明:$f({\frac{1}{x}-1})+f({x+1})=|{\frac{1}{x}-1}|+|{x+1}|≥|{\frac{1}{x}+x}|=\frac{1}{|x|}+|x|≥2\sqrt{|x|•|{\frac{1}{x}}|}=2$,即$f({\frac{1}{x}-1})+f({x+1})≥2$成立,
當(dāng)且僅當(dāng)x=±1時(shí)等號成立.
點(diǎn)評 本題主要考查絕對值的意義,絕對值不等式的解法,基本不等式的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | C. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | (-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{7}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=-1,b=-4 | B. | a=-$\frac{1}{2}$,b=2 | C. | a=-1,b=4 | D. | a=1,b=-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com