分析 (1)cosβ=$\frac{4}{5}$,0<β<π,可得sinβ=$\sqrt{1-co{s}^{2}β}$.利用$\overrightarrow{a}$•$\overrightarrow$=$\frac{12}{5}$=2cosα×2cosβ+2sinα×2sinβ).可得cos(α-β)=$\frac{3}{5}$.同理可得sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$.利用sinα=sin[(α-β)+β]即可得出.
(2)利用數(shù)量積運(yùn)算性質(zhì)可得:分別計(jì)算$|\overrightarrow{a}|$,$|\overrightarrow|$.代入$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}-{\overrightarrow}^{2}$,看是否為0,即可判斷出結(jié)論.
解答 解:(1)∵cosβ=$\frac{4}{5}$,0<β<π,
∴sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{3}{5}$.
∵$\overrightarrow{a}$•$\overrightarrow$=$\frac{12}{5}$=2cosα×2cosβ+2sinα×2sinβ).
∴cos(α-β)=$\frac{3}{5}$.
∵0<β<α<π,∴0<α-β<π.
∴sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{4}{5}$.
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ
=$\frac{4}{5}×\frac{4}{5}$+$\frac{3}{5}×\frac{3}{5}$=1.
(2)$|\overrightarrow{a}|$=$\sqrt{(2cosα)^{2}+(2sinα)^{2}}$=2,
$|\overrightarrow|$=$\sqrt{(2cosβ)^{2}+(2sinβ)^{2}}$=2.
($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}-{\overrightarrow}^{2}$=22-22=0.
∴($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$).
點(diǎn)評(píng) 本題考查了向量數(shù)量積運(yùn)算性質(zhì)、和差公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等于1m | B. | 大于1m | C. | 小于1m | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,$\frac{2π}{3}$] | B. | [$\frac{π}{2}$,$\frac{2π}{3}$] | C. | [$\frac{2π}{3}$,π] | D. | [$\frac{π}{2}$,$\frac{5π}{6}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com