6.已知平面上的兩個(gè)向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(2cosβ,2sinβ)(0<β<α<π).
(1)若$\overrightarrow{a}$•$\overrightarrow$=$\frac{12}{5}$且cosβ=$\frac{4}{5}$,求sinα的值;
(2)判定向量$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{a}$-$\overrightarrow$是否互相垂直.

分析 (1)cosβ=$\frac{4}{5}$,0<β<π,可得sinβ=$\sqrt{1-co{s}^{2}β}$.利用$\overrightarrow{a}$•$\overrightarrow$=$\frac{12}{5}$=2cosα×2cosβ+2sinα×2sinβ).可得cos(α-β)=$\frac{3}{5}$.同理可得sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$.利用sinα=sin[(α-β)+β]即可得出.
(2)利用數(shù)量積運(yùn)算性質(zhì)可得:分別計(jì)算$|\overrightarrow{a}|$,$|\overrightarrow|$.代入$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}-{\overrightarrow}^{2}$,看是否為0,即可判斷出結(jié)論.

解答 解:(1)∵cosβ=$\frac{4}{5}$,0<β<π,
∴sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{3}{5}$.
∵$\overrightarrow{a}$•$\overrightarrow$=$\frac{12}{5}$=2cosα×2cosβ+2sinα×2sinβ).
∴cos(α-β)=$\frac{3}{5}$.
∵0<β<α<π,∴0<α-β<π.
∴sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{4}{5}$.
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ
=$\frac{4}{5}×\frac{4}{5}$+$\frac{3}{5}×\frac{3}{5}$=1.
(2)$|\overrightarrow{a}|$=$\sqrt{(2cosα)^{2}+(2sinα)^{2}}$=2,
$|\overrightarrow|$=$\sqrt{(2cosβ)^{2}+(2sinβ)^{2}}$=2.
($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}-{\overrightarrow}^{2}$=22-22=0.
∴($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$).

點(diǎn)評(píng) 本題考查了向量數(shù)量積運(yùn)算性質(zhì)、和差公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算題:
(1)∫kdx(k是常數(shù))
(2)∫x-2dx
(3)∫(-$\frac{1}{\sqrt{1-{x}^{2}}}$)dx
(4)∫3xdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知圓C1:(x+8)2+(y+6)2=25和圓C2:(x-4)2+(y-6)2=25.
(1)若直線1過(guò)原點(diǎn),且被C2截得的弦長(zhǎng)為6,求直線l的方程;
(2)是否存在點(diǎn)P滿足:過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和12,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,若存在求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.我們將若干個(gè)數(shù)x,y,z,…的最大值和最小值分別記為max(x,y,z,…)和min(x,y,z,…),已知a+b+c+d+e+f+g=1,求min[max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{C}_{R}Q}\end{array}\right.$,則f(g(π))的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.梯子AB靠在墻上,梯子的底端A到墻根O的距離為2m,梯子的頂端B到地面的距離為7m,現(xiàn)將梯子的底端A向外移動(dòng)到A′,使梯子的底端A′到墻根O的距離等于3m,同時(shí)梯子的頂端B下降B′,那么BB′( 。
A.等于1mB.大于1mC.小于1mD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知:函數(shù)f(x)=5sinxcosx+5$\sqrt{3}$sin2x-$\frac{5}{2}$$\sqrt{3}$(x∈R)
(1)求f(x)的最小正周期;
(2)求f(x)的單遞增區(qū)間;
(3)求f(x)圖象的對(duì)稱軸、對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=$\sqrt{3}$sinx-cosx(x∈[0,π])的單調(diào)遞減區(qū)間是(  )
A.[0,$\frac{2π}{3}$]B.[$\frac{π}{2}$,$\frac{2π}{3}$]C.[$\frac{2π}{3}$,π]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|x|,
(1)解不等式f(x-2)≤2-f(x);
(2)證明:對(duì)任意實(shí)數(shù)x≠0,有$f({\frac{1}{x}-1})+f({x+1})≥2$.

查看答案和解析>>

同步練習(xí)冊(cè)答案