17.在△ABC中,已知sin2A+sin2B=sin2C,求證△ABC是直角三角形.

分析 直接利用正弦定理以及勾股定理判斷即可.

解答 證明:在△ABC中,已知sin2A+sin2B=sin2C,
由正弦定理可得:a2+b2=c2
三角形是直角三角形.

點(diǎn)評(píng) 本題考查正弦定理的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=sin($\frac{π}{2}$x+$\frac{5π}{6}$)的最小正周期為( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.函數(shù)f(x)為定義在R上周期為2的奇函數(shù),且x∈(-1,1)時(shí),f(x)=$\frac{{3}^{x}-a}{{3}^{x}+1}$(a∈R).
(1)求a的值;
(2)求f(log${\;}_{\frac{1}{3}}$6)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S7=49;數(shù)列{bn}的前n項(xiàng)和為Tn,且2bn-Tn=2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an•bn(n∈N+),求數(shù)列{cn}的前n項(xiàng)和Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足a${\;}_{n+1}^{2}$=anan+2,且a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$,求T2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=2cos2x+sin2x的遞增區(qū)間是[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.等比數(shù)列{an}滿足an=$\left\{\begin{array}{l}{{n}^{2},{a}_{n-1}<{n}^{2}}&{\;}\\{2{a}_{n-1},{a}_{n-1}≥{n}^{2}}&{\;}\end{array}\right.$(n≥2),則a1的取值范圍是{a1|a1≥$\frac{9}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知$\overrightarrow{OA}$=(1,3),$\overrightarrow{OB}$=(6,m),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,則|$\overrightarrow{OB}$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)雙曲線x2-y2=1的兩漸近線與直線x=$\frac{\sqrt{2}}{2}$圍成的三角形區(qū)域(包含邊界)為D,P(x,y)為區(qū)域D內(nèi)的動(dòng)點(diǎn),則目標(biāo)函數(shù)z=2x-y的最大值為( 。
A.-2B.-$\frac{\sqrt{2}}{2}$C.0D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案