2.函數(shù)y=2cos2x+sin2x的遞增區(qū)間是[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

分析 利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性求得函數(shù)y=2cos2x+sin2x的遞增區(qū)間.

解答 解:∵函數(shù)y=2cos2x+sin2x=cos2x+sin2x+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得 kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
故函數(shù)的遞增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z,
故答案為:[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

點(diǎn)評 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.$\frac{tan39°-tan9°-tan30°}{tan39°tan9°}$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x}{lnx}$-ax,a>0.
(1)若函數(shù)y=f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值
(2)若存在x1∈[e,e2],使f(x1)≤$\frac{1}{4}$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$)(0≤x<π),且f(α)=f(β)=$\frac{1}{3}$(α≠β),則α+β=$\frac{7π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,已知sin2A+sin2B=sin2C,求證△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=x2+2ax+b2
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求函數(shù)f(x)有零點(diǎn)的概率
(2)若a是從區(qū)間[0,3]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求函數(shù)f(x)有零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,若sin(A+B-C)+sin(B-A-C)=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)的定義域和值域均為[0,+∞),且對任意x∈[0,+∞),$\sqrt{x}$,$\frac{\sqrt{f(x)}}{2}$,$\sqrt{3}$都成等差數(shù)列,又正項(xiàng)數(shù)列{an}中,a1=3,其前n項(xiàng)和Sn滿足Sn+1=f(Sn)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若$\sqrt{_{n}}$是$\frac{3}{{a}_{n+1}}$,$\frac{3}{{a}_{n}}$的等比中項(xiàng),求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等比數(shù)列{an}前n項(xiàng)和為Sn,若al+8a4=0,則$\frac{S_4}{S_3}$=( 。
A.-$\frac{5}{3}$B.$\frac{15}{7}$C.$\frac{5}{6}$D.$\frac{15}{14}$

查看答案和解析>>

同步練習(xí)冊答案