5.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S7=49;數(shù)列{bn}的前n項(xiàng)和為Tn,且2bn-Tn=2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an•bn(n∈N+),求數(shù)列{cn}的前n項(xiàng)和Pn

分析 (1)利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式可得an.利用遞推關(guān)系可得bn
(2)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a3=5,S7=49,∴a1+2d=5,7a1+$\frac{7×6}{2}$d=49,
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
∵2bn-Tn=2,∴n=1時(shí),2b1-b1=2,解得b1=2.
n≥2時(shí),2bn-1-Tn-1=2,可得:2bn-2bn-1+bn=0,化為:$_{n}=\frac{2}{3}_{n-1}$.
∴數(shù)列{bn}是等比數(shù)列,首項(xiàng)為2,公比為$\frac{2}{3}$.
∴$_{n}=2×(\frac{2}{3})^{n-1}$.
(2)cn=an•bn=(4n-2)×$(\frac{2}{3})^{n-1}$,
∴數(shù)列{cn}的前n項(xiàng)和Pn=$2+6×(\frac{2}{3})$+$10×(\frac{2}{3})^{2}$+…+(4n-2)×$(\frac{2}{3})^{n-1}$,
$\frac{2}{3}{P}_{n}$=2×$\frac{2}{3}$+6×$(\frac{2}{3})^{2}$+…+(4n-6)×$(\frac{2}{3})^{n-1}$+(4n-2)×$(\frac{2}{3})^{n}$,
∴$\frac{1}{3}{P}_{n}$=2+4$[\frac{2}{3}+(\frac{2}{3})^{2}+…+(\frac{2}{3})^{n-1}]$-(4n-2)×$(\frac{2}{3})^{n}$=2+4×$\frac{\frac{2}{3}[1-(\frac{2}{3})^{n-1}]}{1-\frac{2}{3}}$-(4n-2)×$(\frac{2}{3})^{n}$=10-(4n+10)×$(\frac{2}{3})^{n}$,
∴Pn=30-(12n+30)×$(\frac{2}{3})^{n}$.

點(diǎn)評(píng) 本題考查了數(shù)列的遞推關(guān)系、“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=$\sqrt{2}$,AF=1,M是線段EF的中點(diǎn).
(1)求證AM∥平面BDE;
(2)求二面角A-DF-B的大。
(3)試在線段BC上確定一點(diǎn)P,使得棱錐P-BDF的體積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求過兩條直線y=2x+3與3x-y+2=0的交點(diǎn),且分別滿足下列條件的直線方程:
(1)斜率為-$\frac{1}{2}$;(2)過點(diǎn)P(2,3);
(3)垂直于直線3x-2y+4=0;(4)平行于直線3x+y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x}{lnx}$-ax,a>0.
(1)若函數(shù)y=f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值
(2)若存在x1∈[e,e2],使f(x1)≤$\frac{1}{4}$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.證明圓心為坐標(biāo)原點(diǎn),半徑為5的圓的方程是x2+y2=25,并判斷點(diǎn)M(3,-4),N(-2$\sqrt{5}$,2)是否在這個(gè)圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$)(0≤x<π),且f(α)=f(β)=$\frac{1}{3}$(α≠β),則α+β=$\frac{7π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,已知sin2A+sin2B=sin2C,求證△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,若sin(A+B-C)+sin(B-A-C)=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=ln(x2+1)的圖象在點(diǎn)(1,f(1))處的切線的傾斜角為( 。
A.0B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案