【題目】某學校食堂早餐只有花卷、包子、面條和蛋炒飯四種主食可供食用,有5名同學前去就餐,每人只選擇其中一種,且每種主食都至少有一名同學選擇.已知包子數(shù)量不足僅夠一人食用,甲同學腸胃不好不會選擇蛋炒飯,則這5名同學不同的主食選擇方案種數(shù)為________.(用數(shù)字作答)
【答案】132
【解析】
分類討論:甲選包子,則有2人選同一種主食,剩下2人選其余主食;甲不選包子,其余4人中1人選包子,方法為4種,甲花卷或面條,方法為2種,其余3人,有1人選甲選的主食,剩下2人選其余主食,或沒有人選甲選的主食,相加后得到結(jié)果.
分類討論:甲選包子,則有2人選同一種主食,方法為=18,
剩下2人選其余主食,方法為=2,共有方法18×2=36種;
甲不選包子,其余4人中1人選包子,方法為4種,甲花卷或面條,方法為2種,其余3人,
若有1人選甲選的主食,剩下2人選其余主食,方法為3=6;
若沒有人選甲選的主食,方法為=6,共有4×2×(6+6)=96種,
故共有36+96=132種,
故答案為:132.
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系中, 直線的參數(shù)方程為是為參數(shù)), 以坐標原點為極點, 軸正半軸為極軸建立極坐標系, 曲線的極坐標方程為.
(1) 判斷直線與曲線的位置關(guān)系;
(2) 在曲線上求一點,使得它到直線的距離最大,并求出最大距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:
場數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認為“歌迷”與性別有關(guān)?
非歌迷 | 歌迷 | 合計 | |
男 | |||
女 | |||
合計 |
(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)
設(shè)函數(shù),其中.
( I )若函數(shù)圖象恒過定點P,且點P在的圖象上,求m的值;
(Ⅱ)當時,設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點P、Q,
使△OPQ(O為原點)是以O為直角頂點的直角三角形,且該三角形斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年6月19日凌晨某公司公布的年中促銷全天交易數(shù)據(jù)顯示,天貓年中促銷當天全天下單金額為1592億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機抽查了6月18日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購金額(元) | 頻數(shù) | 頻率 |
5 | 0.05 | |
15 | 0.15 | |
25 | 0.25 | |
30 | 0.3 | |
合計 | 100 | 1 |
(Ⅰ)先求出的值,再將圖中所示的頻率分布直方圖繪制完整;
(Ⅱ)對這100名網(wǎng)購者進一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)此判斷能否在犯錯誤的概率不超過0.025的前提下認為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
網(wǎng)齡3年以上 | 網(wǎng)齡不足3年 | 總計 | |
購物金額在2000元以上 | 35 | ||
購物金額在2000元以下 | 20 | ||
總計 | 100 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:其中.
(Ⅲ)從這100名網(wǎng)購者中根據(jù)購物金額分層抽出20人給予返券獎勵,為進一步激發(fā)購物熱情,在和兩組所抽中的8人中再隨機抽取2人各獎勵1000元現(xiàn)金,求組獲得現(xiàn)金獎的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在實數(shù)集上的函數(shù)f(x)=x2+ax(a為常數(shù)),g(x)= x3﹣bx+m(b為常數(shù)),若函數(shù)f(x)在x=1處的切線斜率為3,x= 是g(x)的一個極值點
(1)求a,b的值;
(2)若存在x∈[﹣4,4]使得f(x)≥g(x)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的展開式中的第二項和第三項的系數(shù)相等.
(1)求的值;
(2)求展開式中所有二項式系數(shù)的和;
(3)求展開式中所有的有理項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}是以d(d≠0)為公差的等差數(shù)列,a1=2,且a2 , a4 , a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an2n(n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com