精英家教網 > 高中數學 > 題目詳情

【題目】已知△ABC的邊長為2的等邊三角形,動點P滿足 ,則 的取值范圍是

【答案】[﹣ ,0]
【解析】解:如圖所示,
△ABC中,設BC的中點為O,則 =2 ,
= sin2θ +cos2θ =sin2θ +cos2θ
=(1﹣cos2θ) +cos2θ
= +cos2θ( ),
=cos2θ( ),
可得 =cos2θ ,
又∵cos2θ∈[0,1],∴P在線段OA上,
由于BC邊上的中線OA=2×sin60°=
因此( + =2 ,
設| |=t,t∈[0, ],
可得( + =﹣2t( ﹣t)=2t2﹣2 t=2(t﹣ 2
∴當t= 時,( + 取得最小值為﹣ ;
當t=0或 時,( + 取得最大值為0;
的取值范圍是[﹣ ,0].
所以答案是:[﹣ ,0].

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為增強市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務宣傳志愿者. 從符合條件的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .

(Ⅰ)求圖中的值,并根據頻率分布直方圖估計這500名志愿者中年齡在歲的人數;

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人. 記這3名志愿者中“年齡低于35歲”的人數為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點(1, )是函數f(x)= ax(a>0,a≠1)圖象上一點,等比數列{an}的前n項和為c﹣f(n).數列{bn}(bn>0)的首項為2c,前n項和滿足 = +1(n≥2). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{ }的前n項和為Tn , 問使Tn 的最小正整數n是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函數f(x)=lg(2x+a)的定義域為集合C,滿足AC,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 (n∈N*)的展開式中第五項的系數與第三項的系數的比是10:1.
(1)求在展開式中含x 的項;
(2)求展開式中系數最大的項.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場舉行購物抽獎活動,抽獎箱中放有除編號不同外,其余均相同的20個小球,這20個小球編號的莖葉圖如圖所示,活動規(guī)則如下:從抽獎箱中隨機抽取一球,若抽取的小球編號是十位數字為l的奇數,則為一等獎,獎金100元;若抽取的小球編號是十位數字為2的奇數,則為二等獎,獎金50元;若抽取的小球是其余編號則不中獎.現某顧客有放回的抽獎兩次,兩次抽獎相互獨立. (I)求該顧客在兩次抽獎中恰有一次中獎的概率;
(Ⅱ)記該顧客兩次抽獎后的獎金之和為隨機變量X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠為了對新研發(fā)的產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組檢測數據,如下表所示:

已知變量具有線性負相關關系,且, ,現有甲、乙、丙三位同學通過計算求得其回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.

(1)試判斷誰的計算結果正確?并求出的值;

2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過1,則該檢測數據是“理想數據”,現從檢測數據中隨機抽取2個,求這兩個檢測數據均為“理想數據”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是y=f(x)的導函數的圖象,現有四種說法: 1)f(x)在(﹣2,1)上是增函數;
2)x=﹣1是f(x)的極小值點;
3)f(x)在(﹣1,2)上是增函數;
4)x=2是f(x)的極小值點;
以上說法正確的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)=x2﹣(2a+1)x+alnx (Ⅰ) 當a=1時,求函數g(x)的單調增區(qū)間;
(Ⅱ) 求函數g(x)在區(qū)間[1,e]上的最小值;
(Ⅲ) 在(Ⅰ)的條件下,設f(x)=g(x)+4x﹣x2﹣2lnx,
證明: (n≥2).(參考數據:ln2≈0.6931)

查看答案和解析>>

同步練習冊答案