10.函數(shù)y=sin(2x+$\frac{3π}{4}$)的一條對稱軸是( 。
A.x=$\frac{π}{4}$B.x=-$\frac{π}{4}$C.x=$\frac{π}{8}$D.x=-$\frac{π}{8}$

分析 由條件根據(jù)正弦函數(shù)的圖象的對稱性,求出函數(shù)y=sin(2x+$\frac{3π}{4}$)的一條對稱軸.

解答 解:對于函數(shù)y=sin(2x+$\frac{3π}{4}$),令2x+$\frac{3π}{4}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$-$\frac{π}{8}$,k∈z,
結(jié)合所給的選項,只有D滿足條件,
故選:D.

點評 本題主要考查正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,以坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=2cosθ.
(1)求直線l和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點到直線l的距離的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c,2(a2-b2)=2accosB+bc.
(Ⅰ)求A;
(Ⅱ)D為邊BC上一點,BD=3DC,∠DAB=$\frac{π}{2}$,求tanC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某人騎車以a km/h的速度向東行駛,感到風(fēng)從正北方向吹來,而當(dāng)速度為2a km/h時,感到風(fēng)從東北方向吹來,試求實際風(fēng)速和方向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=ex+x(x∈R)可表示為奇函數(shù)h(x)與偶函數(shù)g(x)的和,則g(0)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合A={0,1,2},B={x∈R|x2-3x+2=0},則(  )
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={x|x2-2x-3<0},B={y|y=2x,x∈[0,2]},則A∩B=( 。
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,且a1=2,a2+a3=13,則a4+a5+a6=(  )
A.45B.43C.40D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cost}\\{y=2\sqrt{3}sint}\end{array}\right.$,(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為3ρcosθ+2ρsinθ=12,若直線l與曲線C交于A、B兩點,M為曲線C與y軸負(fù)半軸的交點,則四邊形CMAB的面積為6+4$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案