【題目】設(shè)Sn是等比數(shù)列{an}的前n項和,S3 , S9 , S6成等差數(shù)列,且a2+a5=2am , 則m= .
【答案】8
【解析】解:∵Sn是等比數(shù)列{an}的前n項和,且S3 , S9 , S6成等差數(shù)列,
∴2S9=S3+S6 , 即 = + ,
整理得:2(1﹣q9)=1﹣q3+1﹣q6 , 即1+q3=2q6 ,
又a2+a5=a1q+a1q4=a1q(1+q3)=2a1q7 , 2am=2a1qm﹣1 , 且a2+a5=2am ,
∴2a1q7=2a1qm﹣1 , 即m﹣1=7,
則m=8.
所以答案是:8
【考點精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項公式(及其變式)的相關(guān)知識,掌握通項公式:,以及對等差數(shù)列的性質(zhì)的理解,了解在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內(nèi)該群體成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中的成員自駕時,自駕群體的人均通勤時間是(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為40鐘,根據(jù)上述分析結(jié)果回答下列問題:
(1)請你說明,當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知拋物線的焦點為,準(zhǔn)線與軸的交點為,過點的直線,拋物線相交于不同的兩點.
(1)若,求直線的方程;
(2)若點在以為直徑的圓外部,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)x,y滿足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C為銳角△ABC的三個內(nèi)角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且 ⊥ .
(1)求A的大。
(2)求y=2sin2B+cos( ﹣2B)取最大值時角B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)求函數(shù)f(x)的圖象在x=1處的切線方程;
(2)若函數(shù)y=f(x)+ 在[ ,+∞)上有兩個不同的零點,求實數(shù)k的取值范圍;
(3)是否存在實數(shù)k,使得對任意的x∈( ,+∞),都有函數(shù)y=f(x)+ 的圖象在g(x)= 的圖象的下方;若存在,請求出最大整數(shù)k的值,若不存在,請說明理由(參考數(shù)據(jù):ln2=0.6931, =1.6487).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,(a>0,b∈R)
(1)當(dāng)x≠0時,求證:f(x)=f( );
(2)若函數(shù)y=f(x),x∈[ ,2]的值域為[5,6],求f(x);
(3)在(2)條件下,討論函數(shù)g(x)=f(2x)﹣k(k∈R)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com