6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為sin$\frac{17π}{3}$,則$\overrightarrow$•(2$\overrightarrow{a}$-$\overrightarrow$)等于( 。
A.2B.-1C.-6D.-18

分析 由題意利用兩個(gè)向量的數(shù)量積的定義求得 $\overrightarrow{a}•\overrightarrow$ 的值,可得 $\overrightarrow$(2$\overrightarrow{a}$-$\overrightarrow$)的值.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為sin$\frac{17π}{3}$=sin(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$,
∴$\overrightarrow{a}•\overrightarrow$=1×2$\sqrt{3}$×(-$\frac{\sqrt{3}}{2}$)=-3,∴$\overrightarrow$•(2$\overrightarrow{a}$-$\overrightarrow$)=2$\overrightarrow{a}•\overrightarrow$-${\overrightarrow}^{2}$=2•(-3)-12=-18,
故選:D.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,兩個(gè)向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=alog2x-blog3x+2,若f($\frac{1}{2015}$)=4,則f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow$=(1,sinx+cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的最大值及相應(yīng)的x的值;
(2)若f(θ)=$\frac{8}{5}$,求sin4θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3=3,且a2016+a2017=0,則S101等于( 。
A.3B.303C.-3D.-303

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在銳角△ABC中,邊a、b是方程x2-2$\sqrt{3}$x+2=0的兩根,A、B滿足2sin(A+B)-$\sqrt{3}$=0,解答下列問題:
(1)求角C的度數(shù);
(2)求邊c的長(zhǎng)度;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+ax2-1,g(x)=ex-e.
(1)討論f(x)的單調(diào)區(qū)間;
(2)若a=1,且對(duì)于任意的x∈(1,+∞),mg(x)>f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,若輸入n的值為5,則輸出S的值為(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|+2|x-1|-a.
(Ⅰ)若a=1,求不等式f(x)>x+2的解集;
(Ⅱ)若不等式f(x)≤a(x+2)的解集為非空集合,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在數(shù)列{an}中,an+1=an+a(n∈N*,a為常數(shù)),若平面上的三個(gè)不共線的非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$滿足$\overrightarrow{OC}$=a1$\overrightarrow{OA}$+a2014$\overrightarrow{OB}$,A,B,C三點(diǎn)共線且該直線不過O點(diǎn),則S2014等于(  )
A.1007B.1006C.2010D.2012

查看答案和解析>>

同步練習(xí)冊(cè)答案