17.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow$=(1,sinx+cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的最大值及相應的x的值;
(2)若f(θ)=$\frac{8}{5}$,求sin4θ的值.

分析 (1)運用向量數(shù)量積的坐標表示,以及二倍角公式、兩角差的正弦公式,化簡f(x),再由正弦函數(shù)的最值,即可得到所求;
(2)由(1)可得sin2θ-cos2θ=$\frac{3}{5}$,兩邊平方,結(jié)合二倍角的正弦公式,化簡即可得到所求值.

解答 解:(1)向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow$=(1,sinx+cosx),
函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$=1+sin2x+(sinx-cosx)(sinx+cosx)
=1+sin2x-(cos2x-sin2x)=1+sin2x-cos2x
=1+$\sqrt{2}$sin(2x-$\frac{π}{4}$),
則當2x-$\frac{π}{4}$=2kπ+$\frac{π}{2}$,即x=kπ+$\frac{3}{8}$π,k∈Z時,f(x)取得最大值為1+$\sqrt{2}$;
(2)f(θ)=1+sin2θ-cos2θ=$\frac{8}{5}$,
即有sin2θ-cos2θ=$\frac{3}{5}$,
兩邊平方可得(sin2θ-cos2θ)2=$\frac{9}{25}$,
即sin22θ+cos22θ-2sin2θcos2θ=$\frac{9}{25}$,
1-sin4θ=$\frac{9}{25}$,
則sin4θ=$\frac{16}{25}$.

點評 本題考查三角函數(shù)的求值,考查恒等變換公式的運用,同時考查向量數(shù)量積的坐標表示,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.求過點P(-1,5)的圓(x-1)2+(y-2)2=4的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示,則這個幾何體的體積是( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知x、y滿足約束條件$\left\{\begin{array}{l}{x-y≥1}\\{2x-y+1≤0}\end{array}\right.$,且目標函數(shù)z=mx-ny(m>0,n<0)的最大值為-6,則$\frac{n}{m-1}$的取值范圍是( 。
A.[-2,0]∪[$\frac{1}{2}$,+∞)B.[2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2ax2+4x-3-a,a∈R.
(1)當a=1時,求函數(shù)f(x)在[-1,1]上的最大值;
(2)如果函數(shù)f(x)在R上有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.“若x2=1,則x=1”的否命題為(  )
A.若x2≠1,則x=1B.若x2=1,則x≠1C.若x2≠1,則x≠1D.若x≠1,則x2≠1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知A={y|y=x+1},B=(x,y)|x2+y2=1},則集合A∩B中元素的個數(shù)為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為sin$\frac{17π}{3}$,則$\overrightarrow$•(2$\overrightarrow{a}$-$\overrightarrow$)等于(  )
A.2B.-1C.-6D.-18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.命題p:“若a≥b,則a+b>2012且a>-b”的逆否命題是( 。
A.若a+b≤2 012且a≤-b,則a<bB.若a+b≤2 012且a≤-b,則a>b
C.若a+b≤2 012或a≤-b,則a<bD.若a+b≤2 012或a≤-b,則a>b

查看答案和解析>>

同步練習冊答案