【題目】平面直角坐標(biāo)系中,橢圓C:的離心率是,拋物線E:的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.
(i)求證:點(diǎn)M在定直線上;
(ii)直線與y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
【答案】(Ⅰ);(Ⅱ)(ⅰ)見解析;(ⅱ)的最大值為,此時(shí)點(diǎn)的坐標(biāo)為
【解析】
試題(Ⅰ)根據(jù)橢圓的離心率和焦點(diǎn)求方程;
(Ⅱ)(ⅰ)由點(diǎn)P的坐標(biāo)和斜率設(shè)出直線l的方程和拋物線聯(lián)立,進(jìn)而判斷點(diǎn)M在定直線上;
(ⅱ)分別列出,面積的表達(dá)式,根據(jù)二次函數(shù)求最值和此時(shí)點(diǎn)P的坐標(biāo).
試題解析:(Ⅰ)由題意知:,解得.
因?yàn)閽佄锞的焦點(diǎn)為,所以,
所以橢圓的方程為.
(Ⅱ)(1)設(shè),由可得,
所以直線的斜率為,其直線方程為,即.
設(shè),聯(lián)立方程組
消去并整理可得,
故由其判別式可得且,
故,
代入可得,
因?yàn)?/span>,所以直線的方程為.
聯(lián)立可得點(diǎn)的縱坐標(biāo)為,即點(diǎn)在定直線上.
(2)由(1)知直線的方程為,
令得,所以,
又,
所以,,
所以,令,則,
因此當(dāng),即時(shí),最大,其最大值為,此時(shí)滿足,
所以點(diǎn)的坐標(biāo)為,因此的最大值為,此時(shí)點(diǎn)的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD中,E,F分別是CD,AD的中點(diǎn),BE,CF交于點(diǎn)P.求證:
(1)BE⊥CF;
(2)AP=AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程;
(2)求經(jīng)過(guò)直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點(diǎn),且平行于直線x+2y-3=0的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率,過(guò)橢圓的左焦點(diǎn)且傾斜角為的直線與圓相交所得弦長(zhǎng)為.
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且,若存在,求直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱此函數(shù)具有“性質(zhì)”
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,則求出的值;若不具有“性質(zhì)”,請(qǐng)說(shuō)明理由;
(2)已知函數(shù)具有“性質(zhì)”且函數(shù)在上的最小值為;當(dāng)時(shí),,求函數(shù)在區(qū)間上的值域;
(3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”,且當(dāng)時(shí),,若函數(shù),在恰好存在個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)及圓.
(1)若直線過(guò)點(diǎn)且被圓截得的線段長(zhǎng)為,求的方程;
(2)求過(guò)點(diǎn)的圓的弦的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,,外接球的球心為О,點(diǎn)E是側(cè)棱上的一個(gè)動(dòng)點(diǎn).有下列判斷:
①直線AC與直線是異面直線;
②一定不垂直;
③三棱錐的體積為定值;
④的最小值為
⑤平面與平面所成角為
其中正確的序號(hào)為_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
【答案】(1)答案見解析;(2) ;(3)中度高血壓人群.
【解析】試題分析:(1)將數(shù)據(jù)對(duì)應(yīng)描點(diǎn),即得散點(diǎn)圖,(2)先求均值,再代人公式求,利用求,(3)根據(jù)回歸直線方程求自變量為180時(shí)對(duì)應(yīng)函數(shù)值,再求與標(biāo)準(zhǔn)值的倍數(shù),確定所屬人群.
試題解析:(1)
(2)
∴
∴回歸直線方程為.
(3)根據(jù)回歸直線方程的預(yù)測(cè),年齡為70歲的老人標(biāo)準(zhǔn)收縮壓約為(mmHg)∵
∴收縮壓為180mmHg的70歲老人為中度高血壓人群.
【題型】解答題
【結(jié)束】
19
【題目】如圖,四棱柱的底面為菱形, , , 為中點(diǎn).
(1)求證: 平面;
(2)若底面,且直線與平面所成線面角的正弦值為,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com